Абсолютная диэлектрическая проницаемость: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Нет описания правки |
KaysBot (обсуждение | вклад) м робот: оформление, ссылки |
||
Строка 1: | Строка 1: | ||
'''Абсолю́тная диэлектри́ческая проница́емость''' – [[физическая величина]], показывающая зависимость [[Электрическая индукция|электрической индукции]] от [[Напряжённость электрического поля|напряжённости электрического поля]]. В зарубежной литературе обозначается буквой [[ε]], в отечественной (где ε обычно обозначает [[Относительная диэлектрическая проницаемость|относительную диэлектрическую проницаемость]]) преимущественно используется сочетание εε<sub>0</sub>, где ε<sub>0</sub> – [[Фундаментальные физические постоянные|электрическая постоянная]]. В этой статье используется ε<sub>a</sub>. В системе [[СИ]] ε<sub>0</sub> = 8,854 187 817 620… ×10^−12 Ф·м<sup>−1</sup> |
'''Абсолю́тная диэлектри́ческая проница́емость''' – [[физическая величина]], показывающая зависимость [[Электрическая индукция|электрической индукции]] от [[Напряжённость электрического поля|напряжённости электрического поля]]. В зарубежной литературе обозначается буквой [[ε]], в отечественной (где ε обычно обозначает [[Относительная диэлектрическая проницаемость|относительную диэлектрическую проницаемость]]) преимущественно используется сочетание εε<sub>0</sub>, где ε<sub>0</sub> – [[Фундаментальные физические постоянные|электрическая постоянная]]. В этой статье используется ε<sub>a</sub>. В системе [[СИ]] ε<sub>0</sub> = 8,854 187 817 620… ×10^−12 Ф·м<sup>−1</sup> |
||
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L<sup> |
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L<sup>−3</sup>M<sup>−1</sup>T<sup>4</sup>I<sup>2</sup>. В единицах системы [[СИ]]: [ε<sub>a</sub>]=[[Фарад|Ф]]/[[Метр|м]]. |
||
Вообще говоря, абсолютная диэлектрическая проницаемость является [[Тензор|тензором]], определяемым из следующих соотношений: <br /> |
Вообще говоря, абсолютная диэлектрическая проницаемость является [[Тензор|тензором]], определяемым из следующих соотношений: <br /> |
Версия от 18:19, 24 августа 2010
Абсолю́тная диэлектри́ческая проница́емость – физическая величина, показывающая зависимость электрической индукции от напряжённости электрического поля. В зарубежной литературе обозначается буквой ε, в отечественной (где ε обычно обозначает относительную диэлектрическую проницаемость) преимущественно используется сочетание εε0, где ε0 – электрическая постоянная. В этой статье используется εa. В системе СИ ε0 = 8,854 187 817 620… ×10^−12 Ф·м−1
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L−3M−1T4I2. В единицах системы СИ: [εa]=Ф/м.
Вообще говоря, абсолютная диэлектрическая проницаемость является тензором, определяемым из следующих соотношений:
(в записи использовано соглашение Эйнштейна)
Или
здесь:
– вектор электрического поля,
– вектор электрической индукции,
– тензор абсолютной диэлектрической проницаемости.
– тензор относительной диэлектрической проницаемости.
Для среды с конечной проводимостью (поглощающая среда) в тензор диэлектрической проницаемости часто включают мнимую компоненту, пропорциональную проводимости. Пусть электрическое поле колеблется по гармоническому закону (здесь – мнимая единица):
Тогда одно из уравнений Максвелла для непроводящей среды с постоянной во времени :
С другой стороны, для проводящей среды с тензором проводимости :
Чтобы привести это уравнение в виду, формально совпадающему с видом уравнения для непроводящей среды, можно ввести комплексную диэлектрическую проницаемость :
Таким образом, становится возможным использование для проводящих сред формул, полученных для идеальных диэлектриков. Кроме того, даже в случаях, когда в постоянном поле среда обладает очень малой проводимостью, на высоких частотах могут появиться потери, которые при таком подходе также можно приписать некоторой "эффективной" проводимости. В таком случае говорят о тангенсе угла диэлектрических потерь:
В некоторых случаях колебания электрического поля изначально определяются как ; тогда нужно везде обратить знак перед .
Необходимо отметить, что:
- Приведенные выше формулы пригодны только для линейных (в электрическом отношении) сред. При небольших напряжённостях полей отклонения от линейности в подавляющем большинстве случаев пренебрежимо малы.
- В электрически изотропных (одинаковых во всех направлениях) средах , где δij – символ Кронекера, поэтому уравнения Максвелла чаще всего записываются с использованием скалярных диэлектрических проницаемостей. В том числе, для вакуума εa считается равной ε0 (скаляр).
- Сами по себе и обычно зависят от частоты электрического поля.
- На самом фундаментальном (с точки зрения классической электродинамики), микроскопическом уровне средой всегда является вакуум, а условие является следствием электрической поляризации материалов.