DRAM: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
орфография
Строка 1: Строка 1:
{{DRAM types}}
{{DRAM types}}
'''DRAM (Dynamic Random Access Memory)''' — тип энергозависимой полупроводниковой [[Компьютерная память|памяти]] с произвольным доступом ([[RAM]]), также [[запоминающее устройство]], наиболее широко используемое в качестве [[ОЗУ]] современных компьютеров.
'''DRAM (dynamic random access memory)''' — тип энергозависимой полупроводниковой [[Компьютерная память|памяти]] с произвольным доступом ([[RAM]]), также [[запоминающее устройство]], наиболее широко используемое в качестве [[ОЗУ]] современных компьютеров.


Физически память DRAM состоит из [[Ячейка памяти|ячеек]], созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 [[бит]]. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества ''строк и столбцов''. Один такой «прямоугольник» называется ''страницей'', а совокупность страниц называется ''банком''. Весь набор ячеек условно делится на несколько областей.
Физически память DRAM состоит из [[Ячейка памяти|ячеек]], созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 [[бит]]. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества ''строк и столбцов''. Один такой «прямоугольник» называется ''страницей'', а совокупность страниц называется ''банком''. Весь набор ячеек условно делится на несколько областей.

Версия от 11:57, 12 сентября 2010

Шаблон:DRAM types DRAM (dynamic random access memory) — тип энергозависимой полупроводниковой памяти с произвольным доступом (RAM), также запоминающее устройство, наиболее широко используемое в качестве ОЗУ современных компьютеров.

Физически память DRAM состоит из ячеек, созданных в полупроводниковом материале, в каждой из которых можно хранить определённый объём данных, от 1 до 4 бит. Совокупность ячеек такой памяти образуют условный «прямоугольник», состоящий из определённого количества строк и столбцов. Один такой «прямоугольник» называется страницей, а совокупность страниц называется банком. Весь набор ячеек условно делится на несколько областей.

Как запоминающее устройство, DRAM-память представляет собой модуль различных конструктивов, состоящий из электрической платы, на которой расположены микросхемы памяти и разъём, необходимый для подключения модуля к материнской плате.

Принцип действия

Принцип действия чтения DRAM для простого массива 4 на 4
Принцип действия записи DRAM для простого массива 4 на 4

Физически DRAM-память представляет собой набор запоминающих ячеек, которые состоят из конденсаторов и транзисторов, расположенных внутри полупроводниковых микросхем памяти.

При отсутствии подачи электроэнергии к памяти этого типа происходит разряд конденсаторов, и память опустошается (обнуляется). Для поддержания необходимого напряжения на обкладках конденсаторов ячеек и сохранения их содержимого, их необходимо периодически подзаряжать, прилагая к ним напряжения через коммутирующие транзисторные ключи. Такое динамическое поддержание заряда конденсатора является основополагающим принципом работы памяти типа DRAM. Конденсаторы заряжают в случае, когда в «ячейку» записывается единичный бит, и разряжают в случае, когда в «ячейку» необходимо записать нулевой бит.

Важным элементом памяти этого типа является чувствительный усилитель (англ. sense amp), подключенный к каждому из столбцов «прямоугольника». Он, реагируя на слабый поток электронов, устремившихся через открытые транзисторы с обкладок конденсаторов, считывает всю страницу целиком. Именно страница является минимальной порцией обмена с динамической памятью, потому что обмен данными с отдельно взятой ячейкой невозможен.

Регенерация

В отличие от статической памяти типа SRAM (англ. static random access memory), которая является конструктивно более сложным и более дорогим типом памяти и используется в основном в кэш-памяти, память DRAM изготавливается на основе конденсаторов небольшой ёмкости, которые быстро теряют заряд, поэтому информацию приходится обновлять через определённые промежутки времени во избежание потерь данных. Этот процесс называется регенерацией памяти. Он реализуется специальным контроллером, установленным на материнской плате или же на кристалле центрального процессора. На протяжении времени, называемого шагом регенерации, в DRAM перезаписывается целая строка ячеек, и через 8-64 мс обновляются все строки памяти.

Процесс регенерации памяти в классическом варианте существенно тормозит работу системы, поскольку в это время обмен данными с памятью невозможен. Регенерация, основанная на обычном переборе строк, не применяется в современных типах DRAM. Существует несколько более экономичных вариантов этого процесса — расширенный, пакетный, распределённый; наиболее экономичной является скрытая (теневая) регенерация.

Среди новых технологий регенерации — PASR (англ. Partial Array Self Refresh), применяемый компанией Samsung в чипах памяти SDRAM с низким уровнем энергопотребления. Регенерация ячеек выполняется только в период ожидания в тех банках памяти, в которых имеются данные.

Параллельно с этой технологией реализуется метод TCSR (англ. Temperature Compensated Self Refresh), который предназначен для регулировки скорости процесса регенерации в зависимости от рабочей температуры.

Характеристики памяти DRAM

Основными характеристиками DRAM являются рабочая частота и тайминги.

При обращении к ячейке памяти контроллер памяти задаёт номер банка, номер страницы в нём, номер строки и номер столбца и на все эти запросы тратится время, помимо этого довольно большой период уходит на открытие и закрытие банка после самой операции. На каждое действие требуется время, называемое таймингом.

Основными таймингами DRAM являются: задержка между подачей номера строки и номера столбца, называемая временем полного доступа (англ. RAS to CAS delay), задержка между подачей номера столбца и получением содержимого ячейки, называемая временем рабочего цикла (англ. CAS delay), задержка между чтением последней ячейки и подачей номера новой строки (англ. RAS precharge). Тайминги измеряются в наносекундах, и чем меньше величина этих таймингов, тем быстрее работает оперативная память.

Типы DRAM

На протяжении долгого времени разработчиками создавались различные типы памяти. Они обладали разными характеристиками, в них были использованы разные технические решения. Основной движущей силой развития памяти было развитие компьютеров и центральных процессоров. Постоянно требовалось увеличение быстродействия и объёма оперативной памяти.

Страничная память

Страничная память (англ. page mode DRAM, PM DRAM) являлась одним из первых типов выпускаемой компьютерной оперативной памяти. Память такого типа выпускалась в начале 1990-х годов, но с ростом производительности процессоров и ресурсоёмкости приложений требовалось увеличивать не только объём памяти, но и скорость её работы.

Быстрая страничная память

Быстрая страничная память (англ. fast page mode DRAM, FPM DRAM) появилась в 1995 году. Принципиально новых изменений память не претерпела, а увеличение скорости работы достигалось путём повышенной нагрузки на аппаратную часть памяти. Данный тип памяти в основном применялся для компьютеров с процессорами Intel 80486 или аналогичных процессоров других фирм. Память могла работать на частотах 25 и 33 МГц с временем полного доступа 70 и 60 нс и с временем рабочего цикла 40 и 35 нс соответственно.

EDO DRAM — память с усовершенствованным выходом

C появлением процессоров Intel Pentium память FPM DRAM оказалась совершенно неэффективной. Поэтому следующим шагом стала память с усовершенствованным выходом (англ. extended data out DRAM, EDO DRAM). Эта память появилась на рынке в 1996 году и стала активно использоваться на компьютерах с процессорами Intel Pentium и выше. Её производительность оказалась на 10—15 % выше по сравнению с памятью типа FPM DRAM. Её рабочая частота была 40 и 50 МГц, соответственно, время полного доступа — 60 и 50 нс, а время рабочего цикла — 25 и 20 нс. Эта память содержит регистр-защелку (англ. data latch) выходных данных, что обеспечивает некоторую конвейеризацию работы для повышения производительности при чтении.

SDRAM — синхронная DRAM

В связи с выпуском новых процессоров и постепенным увеличением частоты системной шины, стабильность работы памяти типа EDO DRAM стала заметно падать. Ей на смену пришла синхронная память (англ. synchronous DRAM, SDRAM). Новыми особенностями этого типа памяти являлись использование тактового генератора для синхронизации всех сигналов и использование конвейерной обработки информации. Также память надёжно работала на более высоких частотах системной шины (100 МГц и выше).

Если для FPM и EDO памяти указывается время чтения первой ячейки в цепочке (время доступа), то для SDRAM указывается время считывания последующих ячеек. Цепочка — несколько последовательных ячеек. На считывание первой ячейки уходит довольно много времени (60-70 нс) независимо от типа памяти, а вот время чтения последующих сильно зависит от типа. Рабочие частоты этого типа памяти могли равняться 66, 100 или 133 МГц, время полного доступа — 40 и 30 нс, а время рабочего цикла — 10 и 7,5 нс.

С этим типом памяти применялась технология Virtual Channel Memory (VCM). VCM использует архитектуру виртуального канала, позволяющую более гибко и эффективно передавать данные с использованием каналов регистра на чипе. Данная архитектура интегрирована в SDRAM. VCM, помимо высокой скорости передачи данных, была совместима с существующими SDRAM, что позволяло делать апгрейд системы без значительных затрат и модификаций. Это решение нашло поддержку у некоторых производителей чипсетов.

Enhanced SDRAM (ESDRAM)

Для преодоления некоторых проблем с задержкой сигнала, присущих стандартной DRAM-памяти, было решено встроить небольшое количество SRAM в чип, то есть создать на чипе кеш.

ESDRAM — это, по существу, SDRAM с небольшим количеством SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц. Как и в случае внешней кеш-памяти, SRAM-кеш предназначен для хранения и выборки наиболее часто используемых данных. Отсюда и уменьшение времени доступа к данным медленной DRAM.

Одним из таких решений являлась ESDRAM от Ramtron International Corporation.

Пакетная EDO RAM

Пакетная память EDO RAM (англ. burst extended data output DRAM, BEDO DRAM) стала дешёвой альтернативой памяти типа SDRAM. Основанная на памяти EDO DRAM, её ключевой особенностью являлась технология поблочного чтения данных (блок данных читался за один такт), что сделало её работу быстрее, чем у памяти типа SDRAM. Однако невозможность работать на частоте системной шины более 66 МГц не позволила данному типу памяти стать популярным.

Video RAM

Специальный тип оперативной памяти — Video RAM (VRAM) — был разработан на основе памяти типа SDRAM для использования в видеоплатах. Он позволял обеспечить непрерывный поток данных в процессе обновления изображения, что было необходимо для реализации изображений высокого качества. На основе памяти типа VRAM, появилась спецификация памяти типа Windows RAM (WRAM), иногда её ошибочно связывают с операционными системами семейства Windows. Её производительность стала на 25 % выше, чем у оригинальной памяти типа SDRAM, благодаря некоторым техническим изменениям.

DDR SDRAM

По сравнению с обычной памятью типа SDRAM, в памяти SDRAM с удвоенной скоростью передачи данных (англ. double data rate SDRAM, DDR SDRAM или SDRAM II) была вдвое увеличена пропускная способность. Первоначально память такого типа применялась в видеоплатах, но позднее появилась поддержка DDR SDRAM со стороны чипсетов.

У всех предыдущих DRAM были разделены линии адреса, данных и управления, которые накладывают ограничения на скорость работы устройств. Для преодоления этого ограничения в некоторых технологических решениях все сигналы стали выполняться на одной шине. Двумя из таких решений являются технологии DRDRAM и SLDRAM. Они получили наибольшую популярность и заслуживают внимания. Стандарт SLDRAM является открытым и, подобно предыдущей технологии, SLDRAM использует оба перепада тактового сигнала. Что касается интерфейса, то SLDRAM перенимает протокол, названный SynchLink Interface и стремится работать на частоте 400 МГц.

Память DDR SDRAM работает на частотах в 100, 133, 166 и 200 МГц, её время полного доступа — 30 и 22,5 нс, а время рабочего цикла — 5, 3,75, 3 и 2,5 нс.

Так как частота синхронизации лежит в пределах от 100 до 200 МГц, а данные передаются по 2 бита на один синхроимпульс, как по фронту, так и по срезу тактового импульса, то эффективная частота передачи данных лежит в пределах от 200 до 400 МГц. Такие модули памяти обозначаются DDR200, DDR266, DDR333, DDR400.

Direct RDRAM или Direct Rambus DRAM

Тип памяти RDRAM является разработкой компании Rambus. Высокое быстродействие этой памяти достигается рядом особенностей, не встречающихся в других типах памяти. Первоначальная очень высокая стоимость памяти RDRAM привела к тому, что производители мощных компьютеров предпочли менее производительную, зато более дешёвую память DDR SDRAM. Рабочие частоты памяти — 400, 600 и 800 МГц, время полного доступа — до 30 нс, время рабочего цикла — до 2,5 нс.

DDR2 SDRAM

Конструктивно новый тип оперативной памяти DDR2 SDRAM был выпущен в 2004 году. Основываясь на технологии DDR SDRAM, этот тип памяти за счёт технических изменений показывает более высокое быстродействие и предназначен для использования на современных компьютерах. Память может работать с тактовой частотой шины 200, 266, 333, 337, 400, 533, 575 и 600 МГц. При этом эффективная частота передачи данных соответственно будет 400, 533, 667, 675, 800, 1066, 1150 и 1200 МГц. Некоторые производители модулей памяти помимо стандартных частот выпускают и образцы, работающие на нестандартных (промежуточных) частотах. Они предназначены для использования в разогнанных системах, где требуется запас по частоте. Время полного доступа — 25, 11,25, 9, 7,5 нс и менее. Время рабочего цикла — от 5 до 1,67 нс.

DDR3 SDRAM

Этот тип памяти основан на технологиях DDR2 SDRAM со вдвое увеличенной частотой передачи данных по шине памяти. Отличается пониженным энергопотреблением по сравнению с предшественниками. Частота полосы пропускания лежит в пределах от 800 до 2400 МГц (рекорд частоты — более 3000 МГц), что обеспечивает большую пропускную способность по сравнению со всеми предшественниками.

Конструктивные исполнения памяти DRAM

Различные корпуса DRAM. Сверху вниз: DIP, SIPP, SIMM (30-контактный), SIMM (72-контактный), DIMM (168-контактный), DIMM (184-контактный, DDR)
модуль SDRAM в 72-контактном корпусе SO-DIMM
модуль DDR2 в 204-контактном корпусе SO-DIMM

Память типа DRAM конструктивно выполняют и в виде отдельных микросхем в корпусах типа DIP, SOIC, BGA, и в виде модулей памяти типа: SIPP, SIMM, DIMM, RIMM.

Первоначально микросхемы памяти выпускались в корпусах типа DIP (к примеру, серия К565РУхх), далее они стали производиться в более технологичных для применения в модулях корпусах.

На многих модулях SIMM и подавляющем числе DIMM устанавливалась SPD (Serial Presence Detect) — небольшая микросхема памяти EEPROM, хранящяя параметры модуля (ёмкость, тип, рабочее напряжение, число банков, время доступа и т. п.), которые программно были доступны как оборудованию, в котором модуль был установлен (применялось для автонастройки параметров), так и пользователям и производителям.

Модули SIPP

Модули типа SIPP (Single In-line Pin Package) представляют собой прямоугольные платы с контактами в виде ряда маленьких штырьков. Этот тип конструктивного исполнения уже практически не используется, так как он далее был вытеснен модулями типа SIMM.

Модули SIMM

Модули типа SIMM (Single In-line Memory Module) представляют собой длинные прямоугольные платы с рядом контактных площадок вдоль одной из её сторон. Модули фиксируются в разъёме (сокете) подключения с помощью защёлок, путём установки платы под некоторым углом и нажатия на неё до приведения в вертикальное положение. Выпускались модули на 4, 8, 16, 32, 64, 128 Мбайт.

Наиболее распространены 30- и 72-контактные модули SIMM.

Модули DIMM

Модули типа DIMM (Dual In-line Memory Module) представляют собой длинные прямоугольные платы с рядами контактных площадок вдоль обеих её сторон, устанавливаемые в разъём подключения вертикально и фиксируемые по обоим торцам защёлками. Микросхемы памяти на них могут быть размещены как с одной, так и с обеих сторон платы.

Модули памяти типа SDRAM наиболее распространены в виде 168-контактных DIMM-модулей, памяти типа DDR SDRAM — в виде 184-контактных, а модули типа DDR2, DDR3 и FB-DIMM SDRAM — 204-контактных модулей.

Модули SO-DIMM

Для портативных и компактных устройств (материнских плат форм-фактора Mini-ITX, лэптопов, ноутбуков, таблетов и т. п.), а также принтеров, сетевой и телекоммуникационной техники и пр. широко применяются конструктивно уменьшенные модули DRAM (как SDRAM, так и DDR SDRAM) — SO-DIMM (Small outline DIMM) — аналоги модулей DIMM в компактном исполнении для экономии места.

Модули SO-DIMM существуют в 72-, 100-, 144-, 200- и 204-контактном исполнении.

Модули RIMM

Модули типа RIMM (Rambus In-line Memory Module) менее распространены, в них выпускается память типа RDRAM. Они представлены 168- и 184-контактными разновидностями, причём на материнской плате такие модули обязательно должны устанавливаться только в парах, в противном случае в пустые разъёмы устанавливаются специальные модули-заглушки (это связано с особенностями конструкции таких модулей). Также существуют 242-контактные PC1066 RDRAM модули RIMM 4200, не совместимые[1] с 184-контактными разъёмами, и уменьшенная версия RIMM — SO-RIMM, которые применяются в портативных устройствах.

Производители микросхем и сборщики модулей

В пятёрку крупнейших производителей DRAM по итогам первого квартала 2008 года вошли Samsung, Hynix, Qimonda, Micron, Elpida. Samsung занимает 27 % рынка производства микросхем DRAM.[источник не указан 5519 дней] Лидером по объёму производства готовых модулей DIMM DRAM является американская компания Kingston Technology.[2]

См. также

Примечания

  1. RDRAM Frequently Asked Questions. What is the difference between 184pin, 168pin, 242pin RIMM modules? (англ.). Rambus. Дата обращения: 24 ноября 2008.
  2. Бюллетень коммерческой информации, № 95, 23 августа 2008, С. 10.

Ссылки