Сферическая тригонометрия: различия между версиями
[непроверенная версия] | [непроверенная версия] |
м →Ссылки |
|||
Строка 47: | Строка 47: | ||
== Ссылки == |
== Ссылки == |
||
[http://www.pm298.ru/sferich.php Краткий справочник по сферической тригонометрии.] |
* [http://www.pm298.ru/sferich.php Краткий справочник по сферической тригонометрии.] |
||
== См. также == |
== См. также == |
Версия от 13:15, 3 октября 2010
Сферическая тригонометрия — раздел тригонометрии, в котором изучаются зависимости между величинами углов и длинами сторон сферических треугольников. Применяется для решения различных геодезических и астрономических задач.
История
Основы сферической тригонометрии были заложены греческим математиком и астрономом Гиппархом во II веке до н. э. Важный вклад в её развитие внесли такие античные учёные, как Менелай Александрийский и Клавдий Птолемей. Сферическая тригонометрия древних греков опиралась на применение теоремы Менелая к полному четырёхстороннику на сфере. Древнегреческие математики излагали условие теоремы Менелая не на языке отношений синусов, а на языке отношений хорд. Для выполнения требуемых расчётов применялись таблицы хорд, аналогичные последующим таблицам синусов.
Как самостоятельная дисциплина сферическая тригонометрия сформировалась в работах средневековых математиков стран ислама. Наибольший вклад в её развитие в эту эпоху внесли такие учёные, как Сабит ибн Корра, Ибн Ирак, Кушьяр ибн Лаббан, Абу-л-Вафа, ал-Бируни, Джабир ибн Афлах, ал-Джайяни, Насир ад-Дин ат-Туси. В их работах были введены основные тригонометрические функции, сформулирована и доказана сферическая теорема синусов и ряд других теорем, применявшихся в астрономических и геодезических расчётах, ведено понятие полярного треугольника, позволявшее вычислять стороны сферического треугольника по трём его данным углам.
История сферической тригонометрии в Европе связана с трудами таких учёных, как Региомонтан, Николай Коперник, Франческо Мавролико.
Основные соотношения
Обозначим стороны сферического треугольника a, b, c, противолежащие этим сторонам углы — A, B, C.
Теоремы для прямоугольного сферического треугольника
Пусть угол C — прямой. Тогда имеют место следующие соотношения:
Теоремы для произвольного сферического треугольника
Первая и вторая сферические теоремы косинусов двойственны по отношению друг к другу. Сферическая теорема синусов двойственна по отношению к самой себе.
Литература
- Матвиевская Г. П. Очерки истории тригонометрии. Ташкент: Фан, 1990.