Псевдоевклидово пространство: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Гастрит (обсуждение | вклад) м расстояния в пр-ве Лобачевского сделаны вещественными |
Tassadar (обсуждение | вклад) м викификация |
||
Строка 1: | Строка 1: | ||
'''Псевдоевклидово пространство''' |
'''Псевдоевклидово пространство''' — конечномерное [[вещественное число|вещественное]] пространство с невырожденной индефинитной [[скалярное произведение|метрикой]]. Важнейшим частным случаем такого пространства является [[пространство Минковского]]. |
||
==Запись расстояния в ортонормированном репере и сигнатура== |
== Запись расстояния в ортонормированном репере и сигнатура == |
||
Выбором [[репер (математика)|репера]] всегда можно добиться того, чтобы [[расстояние]] между точками n-мерного псевдоевклидова пространства с координатами <math>(x_1,\ldots,x_n)</math> и <math>(y_1,\ldots,y_n)</math> записывалось в виде |
Выбором [[репер (математика)|репера]] всегда можно добиться того, чтобы [[расстояние]] между точками n-мерного псевдоевклидова пространства с координатами <math>(x_1,\ldots,x_n)</math> и <math>(y_1,\ldots,y_n)</math> записывалось в виде |
||
Строка 9: | Строка 9: | ||
</math> |
</math> |
||
</center> |
</center> |
||
Реперы (а также отвечающие им [[базис|базисы]]) с таким свойством называются |
Реперы (а также отвечающие им [[базис|базисы]]) с таким свойством называются ''ортонормированными''. Пара чисел <math>(m,n-m)</math> (задающая количество базисных векторов вещественной и чисто мнимой длины, соответственно) не зависит от выбора ортонормированного базиса и называется ''сигнатурой'' псевдоевклидова пространства. Псевдоевклидовы пространства с различными сигнатурами [[изометрия (математика)|неизометричны]] друг другу. Однако пространство с индексом <math>(m,n-m)</math> может быть превращено в пространство с индексом <math>(n-m,m)</math> заменой знака скалярного произведения, и потому различия между такими пространствами обычно не проводят: в частности, [[пространство Минковского]] в разных источниках определяется и как пространство сигнатуры <math>(1,3)</math>, и как пространство сигнатуры <math>(3,1)</math>. Таким образом, каждой [[размерность|размерности]] n отвечает <math>\left[n/2\right]</math> (где прямые скобки означают взятие целой части) различных n-мерных псевдоевклидовых пространств. |
||
==Изотропные направления== |
== Изотропные направления == |
||
Особенностью пространств с индефинитной метрикой является наличие ненулевых векторов, имеющих нулевую длину. Такие векторы (а также прямые, направляющими векторами которых они являются) называются |
Особенностью пространств с индефинитной метрикой является наличие ненулевых векторов, имеющих нулевую длину. Такие векторы (а также прямые, направляющими векторами которых они являются) называются ''изотропными''. В частности, псевдоевклидова плоскость обладает ровно двумя несовпадающими изотропными направлениями. Изотропные прямые трёхмерного псевдоевклидова пространства, проведённые через произвольно фиксированную точку, образуют [[конус]] с вершиной в этой точке. |
||
==Окружности и сферы== |
== Окружности и сферы == |
||
С точки зрения геометрии псевдоевклидовой плоскости, [[окружность|окружностями]] произвольного ненулевого (вещественного или чисто мнимого) радиуса являются [[гипербола|гиперболы]]. Аналогично, в трёхмерном псевдоевклидовом пространстве сигнатуры <math>(2,1)</math> [[сфера|сферами]] ненулевого вещественного радиуса являются [[однополостный гиперболоид|однополостные гиперболоиды]], а сферами ненулевого чисто мнимого радиуса |
С точки зрения геометрии псевдоевклидовой плоскости, [[окружность|окружностями]] произвольного ненулевого (вещественного или чисто мнимого) радиуса являются [[гипербола|гиперболы]]. Аналогично, в трёхмерном псевдоевклидовом пространстве сигнатуры <math>(2,1)</math> [[сфера|сферами]] ненулевого вещественного радиуса являются [[однополостный гиперболоид|однополостные гиперболоиды]], а сферами ненулевого чисто мнимого радиуса — [[двуполостный гиперболоид|двуполостные гиперболоиды]]. |
||
По своим геометрическим свойствам каждая из двух |
По своим геометрическим свойствам каждая из двух «половин» [[гиперсфера|гиперсферы]] мнимого радиуса в <math>n+1</math>-мерном псевдоевклидовом пространстве сигнатуры <math>(n,1)</math> представляет собой n-мерное [[геометрия Лобачевского|пространство Лобачевского]]. |
||
==Литература== |
== Литература == |
||
* П.К.Рашевский. |
* П. К. Рашевский. ''Риманова геометрия и тензорный анализ.'' Любое издание. |
||
{{math-stub}} |
{{math-stub}} |
Версия от 14:55, 19 января 2007
Псевдоевклидово пространство — конечномерное вещественное пространство с невырожденной индефинитной метрикой. Важнейшим частным случаем такого пространства является пространство Минковского.
Запись расстояния в ортонормированном репере и сигнатура
Выбором репера всегда можно добиться того, чтобы расстояние между точками n-мерного псевдоевклидова пространства с координатами и записывалось в виде
Реперы (а также отвечающие им базисы) с таким свойством называются ортонормированными. Пара чисел (задающая количество базисных векторов вещественной и чисто мнимой длины, соответственно) не зависит от выбора ортонормированного базиса и называется сигнатурой псевдоевклидова пространства. Псевдоевклидовы пространства с различными сигнатурами неизометричны друг другу. Однако пространство с индексом может быть превращено в пространство с индексом заменой знака скалярного произведения, и потому различия между такими пространствами обычно не проводят: в частности, пространство Минковского в разных источниках определяется и как пространство сигнатуры , и как пространство сигнатуры . Таким образом, каждой размерности n отвечает (где прямые скобки означают взятие целой части) различных n-мерных псевдоевклидовых пространств.
Изотропные направления
Особенностью пространств с индефинитной метрикой является наличие ненулевых векторов, имеющих нулевую длину. Такие векторы (а также прямые, направляющими векторами которых они являются) называются изотропными. В частности, псевдоевклидова плоскость обладает ровно двумя несовпадающими изотропными направлениями. Изотропные прямые трёхмерного псевдоевклидова пространства, проведённые через произвольно фиксированную точку, образуют конус с вершиной в этой точке.
Окружности и сферы
С точки зрения геометрии псевдоевклидовой плоскости, окружностями произвольного ненулевого (вещественного или чисто мнимого) радиуса являются гиперболы. Аналогично, в трёхмерном псевдоевклидовом пространстве сигнатуры сферами ненулевого вещественного радиуса являются однополостные гиперболоиды, а сферами ненулевого чисто мнимого радиуса — двуполостные гиперболоиды.
По своим геометрическим свойствам каждая из двух «половин» гиперсферы мнимого радиуса в -мерном псевдоевклидовом пространстве сигнатуры представляет собой n-мерное пространство Лобачевского.
Литература
- П. К. Рашевский. Риманова геометрия и тензорный анализ. Любое издание.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |