Спектр оператора: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Fractaler (обсуждение | вклад) м добавлена категория «Спектр по типу» с помощью HotCat |
RRev (обсуждение | вклад) |
||
Строка 29: | Строка 29: | ||
== В квантовой механике == |
== В квантовой механике == |
||
Спектр [[самосопряжённый оператор|самосопряжённых операторов]] играет важную роль в [[квантовая механика|квантовой механике]], определяя множество возможных значений [[квантовая наблюдаемая|наблюдаемой]] при [[измерение (квантовая механика)|измерении]]. В частности, спектр [[гамильтониан (квантовая механика)|гамильтониана]] определяет допустимые [[уровни энергии]] [[квантовая система|квантовой системы]]. |
Спектр [[самосопряжённый оператор|самосопряжённых операторов]] играет важную роль в [[квантовая механика|квантовой механике]], определяя множество возможных значений [[квантовая наблюдаемая|наблюдаемой]] при [[измерение (квантовая механика)|измерении]]. В частности, спектр [[гамильтониан (квантовая механика)|гамильтониана]] определяет допустимые [[уровни энергии]] [[квантовая система|квантовой системы]]. |
||
===Непрерывный спектр=== |
|||
Непрерывный спектр — это [[Спектр оператора|спектр]] значений физической величины, в котором в отличие от дискретного спектра значение этой величины определено для каждого собственного состояния системы, причем бесконечно малое изменение состояния системы приводит к бесконечно малому изменению физической величины. В качестве физической величины могут выступать: координа, импульс, энергия, орбитальный момент движения и т. д. Так как произвольная [[Волновая функция|волновая функция]] '''Ψ''' может быть разложена в ряд по собственным функциям величины с дискретным спектром, то она может быть также разложена и в интеграл по полной системе собственных функций величины с непрерывным спектром. |
|||
== См. также == |
== См. также == |
Версия от 12:55, 22 декабря 2010
Спектр оператора — множество чисел, характеризующее линейный оператор. Применяется в линейной алгебре, функциональном анализе и квантовой механике.
Конечномерный случай
Пусть A — оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.
Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы.
Общее определение
Пусть A — оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор , называемый резольвентой оператора A, определён на всём E и непрерывен. Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества — спектром этого оператора. Спектр оператора представляет собой непустой[1] компакт в k. Обычно в качестве k рассматривают комплексную плоскость .
Внутри спектра оператора можно выделять части, не одинаковые по своим свойствам. Одной из основных классификаций спектра является следующая:
- дискретным (точечным) спектром называется множество всех собственных значений оператора A — только точечный спектр присутствует в конечномерном случае;
- непрерывным спектром называется множество значений , при которых резольвента определена на всюду плотном множестве в E, но не является непрерывной;
- остаточным спектром называется множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.
Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через . При этом выполняется равенство .
В комплексном случае резольвента является голоморфной операторнозначной функцией на резольвентном множестве. В частности, при она может быть разложена в ряд Лорана с центром в точке .
примечания
- ↑
При условиях:
- Во-первых, поле k является алгебраически замкнутым (например, поле комплексных чисел);
- Во-вторых, пространство E имеет размерность больше нуля.
В квантовой механике
Спектр самосопряжённых операторов играет важную роль в квантовой механике, определяя множество возможных значений наблюдаемой при измерении. В частности, спектр гамильтониана определяет допустимые уровни энергии квантовой системы.
Непрерывный спектр
Непрерывный спектр — это спектр значений физической величины, в котором в отличие от дискретного спектра значение этой величины определено для каждого собственного состояния системы, причем бесконечно малое изменение состояния системы приводит к бесконечно малому изменению физической величины. В качестве физической величины могут выступать: координа, импульс, энергия, орбитальный момент движения и т. д. Так как произвольная волновая функция Ψ может быть разложена в ряд по собственным функциям величины с дискретным спектром, то она может быть также разложена и в интеграл по полной системе собственных функций величины с непрерывным спектром.