Абсолютная диэлектрическая проницаемость: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Tretyak (обсуждение | вклад) Нет описания правки |
LarBot (обсуждение | вклад) м подстановка дат в шаблонах с помощью AWB |
||
Строка 1: | Строка 1: | ||
{{Нет ссылок}} |
{{Нет ссылок|дата=12 мая 2011}} |
||
{{Значения|Диэлектрическая проницаемость}} |
{{Значения|Диэлектрическая проницаемость}} |
||
'''Абсолю́тная диэлектри́ческая проница́емость''' — [[физическая величина]], показывающая зависимость [[Электрическая индукция|электрической индукции]] от [[Напряжённость электрического поля|напряжённости электрического поля]]. В зарубежной литературе обозначается буквой [[Эпсилон (буква)|ε]], в отечественной (где <math>~{\varepsilon}</math> обычно обозначает [[Относительная диэлектрическая проницаемость|относительную диэлектрическую проницаемость]]) преимущественно используется сочетание <math>~{\varepsilon}{\varepsilon}_{0}</math>, где <math>~{\varepsilon}_{0}</math> — [[Фундаментальные физические постоянные|электрическая постоянная]]. В этой статье используется <math>~{\varepsilon}_{a}</math>. |
'''Абсолю́тная диэлектри́ческая проница́емость''' — [[физическая величина]], показывающая зависимость [[Электрическая индукция|электрической индукции]] от [[Напряжённость электрического поля|напряжённости электрического поля]]. В зарубежной литературе обозначается буквой [[Эпсилон (буква)|ε]], в отечественной (где <math>~{\varepsilon}</math> обычно обозначает [[Относительная диэлектрическая проницаемость|относительную диэлектрическую проницаемость]]) преимущественно используется сочетание <math>~{\varepsilon}{\varepsilon}_{0}</math>, где <math>~{\varepsilon}_{0}</math> — [[Фундаментальные физические постоянные|электрическая постоянная]]. В этой статье используется <math>~{\varepsilon}_{a}</math>. |
||
Строка 5: | Строка 5: | ||
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L<sup>−3</sup>M<sup>−1</sup>T<sup>4</sup>I². В единицах системы [[СИ]]: [<math>~{\varepsilon}_{0}</math>]=[[Фарад|Ф]]/[[Метр|м]]. |
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L<sup>−3</sup>M<sup>−1</sup>T<sup>4</sup>I². В единицах системы [[СИ]]: [<math>~{\varepsilon}_{0}</math>]=[[Фарад|Ф]]/[[Метр|м]]. |
||
Вообще говоря, абсолютная диэлектрическая проницаемость является [[ |
Вообще говоря, абсолютная диэлектрическая проницаемость является [[тензор]]ом, определяемым из следующих соотношений: <br /> |
||
(в записи использовано [[соглашение Эйнштейна]]) |
(в записи использовано [[соглашение Эйнштейна]]) |
||
Строка 20: | Строка 20: | ||
<math>~\mathbf{D} = D_{1}\mathbf{e}_1+D_{2}\mathbf{e}_2+D_{3}\mathbf{e}_3</math> — вектор электрической индукции, <br /> |
<math>~\mathbf{D} = D_{1}\mathbf{e}_1+D_{2}\mathbf{e}_2+D_{3}\mathbf{e}_3</math> — вектор электрической индукции, <br /> |
||
<math>~\boldsymbol{\varepsilon}_{a} = ((\varepsilon_{a})_{ij})</math> — тензор абсолютной диэлектрической проницаемости. <br /> |
<math>~\boldsymbol{\varepsilon}_{a} = ((\varepsilon_{a})_{ij})</math> — тензор абсолютной диэлектрической проницаемости. <br /> |
||
<math>~\boldsymbol{\varepsilon} = (\varepsilon_{ij})</math> — тензор относительной диэлектрической проницаемости. |
<math>~\boldsymbol{\varepsilon} = (\varepsilon_{ij})</math> — тензор относительной диэлектрической проницаемости. |
||
Для среды с конечной [[Электрическая проводимость|проводимостью]] (поглощающая среда) в тензор диэлектрической проницаемости часто включают [[Комплексное число|мнимую компоненту]], пропорциональную проводимости. Пусть электрическое поле колеблется по [[Гармонические колебания|гармоническому]] закону (здесь <math>~i</math> — [[мнимая единица]]): |
Для среды с конечной [[Электрическая проводимость|проводимостью]] (поглощающая среда) в тензор диэлектрической проницаемости часто включают [[Комплексное число|мнимую компоненту]], пропорциональную проводимости. Пусть электрическое поле колеблется по [[Гармонические колебания|гармоническому]] закону (здесь <math>~i</math> — [[мнимая единица]]): |
||
Строка 51: | Строка 51: | ||
Необходимо отметить, что: |
Необходимо отметить, что: |
||
* Приведенные выше формулы пригодны только для [[Нелинейная оптика|линейных]] (в электрическом отношении) сред. При небольших напряжённостях полей отклонения от линейности в подавляющем большинстве случаев пренебрежимо малы. |
* Приведенные выше формулы пригодны только для [[Нелинейная оптика|линейных]] (в электрическом отношении) сред. При небольших напряжённостях полей отклонения от линейности в подавляющем большинстве случаев пренебрежимо малы. |
||
* В электрически [[Изотропия|изотропных]] (одинаковых во всех направлениях) средах <math>~\boldsymbol{\varepsilon}_{ij} = ~\boldsymbol{\delta}_{ij}\varepsilon</math>, где δ<sub>ij</sub> — [[символ Кронекера]], поэтому [[уравнения Максвелла]] чаще всего записываются с использованием скалярных диэлектрических проницаемостей. В том числе, для [[ |
* В электрически [[Изотропия|изотропных]] (одинаковых во всех направлениях) средах <math>~\boldsymbol{\varepsilon}_{ij} = ~\boldsymbol{\delta}_{ij}\varepsilon</math>, где δ<sub>ij</sub> — [[символ Кронекера]], поэтому [[уравнения Максвелла]] чаще всего записываются с использованием скалярных диэлектрических проницаемостей. В том числе, для [[вакуум]]а <math>~{\varepsilon}_{a}</math> считается равной <math>~{\varepsilon}_{0}</math>. |
||
* Сами по себе <math>~\boldsymbol{\varepsilon}_{a}</math> и <math>~\boldsymbol{\sigma}</math> обычно зависят от [[Частота|частоты]] электрического поля. |
* Сами по себе <math>~\boldsymbol{\varepsilon}_{a}</math> и <math>~\boldsymbol{\sigma}</math> обычно зависят от [[Частота|частоты]] электрического поля. |
||
* На микроскопическом уровне средой всегда является вакуум, а условие <math>~\varepsilon_{a}\ne\varepsilon_{0}</math> является следствием [[Поляризация диэлектриков|электрической поляризации материалов]]. |
* На микроскопическом уровне средой всегда является вакуум, а условие <math>~\varepsilon_{a}\ne\varepsilon_{0}</math> является следствием [[Поляризация диэлектриков|электрической поляризации материалов]]. |
||
Версия от 09:44, 12 мая 2011
В статье не хватает ссылок на источники (см. рекомендации по поиску). |
Абсолю́тная диэлектри́ческая проница́емость — физическая величина, показывающая зависимость электрической индукции от напряжённости электрического поля. В зарубежной литературе обозначается буквой ε, в отечественной (где обычно обозначает относительную диэлектрическую проницаемость) преимущественно используется сочетание , где — электрическая постоянная. В этой статье используется .
Из приведенных ниже формул следует, что абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L−3M−1T4I². В единицах системы СИ: []=Ф/м.
Вообще говоря, абсолютная диэлектрическая проницаемость является тензором, определяемым из следующих соотношений:
(в записи использовано соглашение Эйнштейна)
Или
здесь:
— вектор электрического поля,
— вектор электрической индукции,
— тензор абсолютной диэлектрической проницаемости.
— тензор относительной диэлектрической проницаемости.
Для среды с конечной проводимостью (поглощающая среда) в тензор диэлектрической проницаемости часто включают мнимую компоненту, пропорциональную проводимости. Пусть электрическое поле колеблется по гармоническому закону (здесь — мнимая единица):
Тогда одно из уравнений Максвелла для непроводящей среды с постоянной во времени :
С другой стороны, для проводящей среды с тензором проводимости :
Чтобы привести это уравнение в виду, формально совпадающему с видом уравнения для непроводящей среды, можно ввести комплексную диэлектрическую проницаемость :
Таким образом, становится возможным использование для проводящих сред формул, полученных для идеальных диэлектриков. Кроме того, даже в случаях, когда в постоянном поле среда обладает очень малой проводимостью, на высоких частотах могут появиться потери, которые при таком подходе также можно приписать некоторой «эффективной» проводимости. В таком случае говорят о тангенсе угла диэлектрических потерь:
В некоторых случаях колебания электрического поля изначально определяются как ; тогда нужно везде обратить знак перед .
Необходимо отметить, что:
- Приведенные выше формулы пригодны только для линейных (в электрическом отношении) сред. При небольших напряжённостях полей отклонения от линейности в подавляющем большинстве случаев пренебрежимо малы.
- В электрически изотропных (одинаковых во всех направлениях) средах , где δij — символ Кронекера, поэтому уравнения Максвелла чаще всего записываются с использованием скалярных диэлектрических проницаемостей. В том числе, для вакуума считается равной .
- Сами по себе и обычно зависят от частоты электрического поля.
- На микроскопическом уровне средой всегда является вакуум, а условие является следствием электрической поляризации материалов.
См. также
- Относительная диэлектрическая проницаемость
- Уравнения Максвелла
- Диэлектрик
- Соотношения Крамерса — Кронига
Литература
Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — 5000 экз. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..