Телескоп: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Bezik (обсуждение | вклад) →Известные производители любительских телескопов: статья о компании Levenhuk удалена, а инфо о ней нет даже в жёлтых страницах |
Метка: добавление ссылки |
||
Строка 446: | Строка 446: | ||
* [http://astronomer.ru/ «АиТ» — Астрономия и телескопостроение] |
* [http://astronomer.ru/ «АиТ» — Астрономия и телескопостроение] |
||
* [http://astrotourist.info/fokuser - Описание фокусера телескопа на сайте Астротуриста] |
* [http://astrotourist.info/fokuser - Описание фокусера телескопа на сайте Астротуриста] |
||
* [http://astrocalc.ru/ Калькулятор характеристик оптического телескопа] |
|||
=== На других языках === |
=== На других языках === |
Версия от 08:29, 3 июня 2011
В этой статье внешние ссылки могут не соответствовать правилам Википедии. |
Телеско́п (от др.-греч. τῆλε — далеко + σκοπέω — смотрю) — прибор, предназначенный для наблюдения небесных светил[1].
В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.
Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы, рентгеновские телескопы, гамма-телескопы. Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн.
Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами[1]), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения[2]. Также, телескоп может использоваться в качестве зрительной трубы, для решения задач наблюдения за удалёнными объектами[3]. Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в 1608 Ханс Липперсхей. Также создание телескопа приписывается его современнику Захарию Янсену.
История
Годом изобретения телескопа, а вернее зрительной трубы, считают 1608 год, когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге. Тем не менее в выдаче патента ему было отказано, в силу того что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара, уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент. Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году.[4] в «Дополнениях в Вителлию», опубликованных в 1604 г. Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены еще в записях Леонардо Да Винчи датируемых 1509-м годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).
Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные стал Галилей. В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива — 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями, тем не менее, с его помощью Галилей сделал ряд открытий.
Название «телескоп» предложил в 1611 году греческий математик Джованни Демизиани для одного из инструментов Галилея, показанном на банкете в Академии деи Линчеи. Сам Галилей использовал для своих телескопов термин лат. perspicillum.[5]
Оптические телескопы
Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра[6]. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом[7]. Телескоп фокусируется при помощи фокусера (фокусировочного устройства).
По своей оптической схеме большинство телескопов делятся на:
- Линзовые (рефракторы или диоптрические) — в качестве объектива используется линза или система линз.
- Зеркальные (рефлекторы или катаптрические) — в качестве объектива используется вогнутое зеркало.
- Зеркально-линзовые телескопы (катадиоптрические) — в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.
Кроме того, для наблюдений Солнца профессиональные астрономы используют специальные солнечные телескопы, отличающихся конструктивно от традиционных звездных телескопов.
Характеристики оптических телескопов
Оптический телескоп — это афокальная система (оптическая сила равна нулю[6]), состоящая из объектива и окуляра. Телескоп увеличивает видимый угловой размер и видимую яркость наблюдаемых объектов[3]. Основными параметрами, которые определяют другие характеристики телескопа, являются: диаметр объектива (апертура) и фокусное расстояние объектива.
- Разрешающая способность зависит от апертуры. Приблизительно определяется по формуле
- ,
где — угловое разрешение в угловых секундах, а — диаметр объектива в миллиметрах.
- Оптическое увеличение определяется отношением
- ,
где и — фокусные расстояния объектива и окуляра.
- Максимальное оптическое увеличение телескопа определяется удвоенным значением диаметра его объектива, выраженного в миллиметрах, увеличение выражается в кратах (Nx — эн крат),
- .
- Диаметр поля зрения телескопа (size of visible sky field-размер видимого поля неба). Опытным путём установлено, что диаметр поля зрения телескопа, выраженный в минутах дуги, зависит от применённого увеличения,
- .
- Относительное отверстие телескопа — это отношение диаметра объектива телескопа к его фокусному расстоянию , где и выражаются в миллиметрах,
- .
- Светосила телескопа ,
- .
Относительное отверстие телескопа и светосила являются важной характеристикой объектива телескопа. Это обратные друг другу величины. Чем больше светосила — меньше относительное отверстие, тем ярче формирует изображение в фокальной плоскости объектив телескопа. Но при этом получается меньшее увеличение, которое даёт данный объектив.
- Проницающая сила (оптическая мощь) — звёздная величина наиболее слабых звёзд, видимых с помощью телескопа при наблюдении в зените. Для визуального телескопа может быть оценена по формуле Боуэна
- .
Так же в литературе встречается другая формула (упрощённая),
- .
Проницающая сила рефлекторов на 1-2m выше, чем у рефракторов. Проницающая сила телескопа сильно зависит от качества оптики, яркости неба, прозрачности атмосферы и её спокойствия. Уровень и тип оптических искажений (аберраций) зависит от конструкции телескопа, и физических свойств его оптических компонентов — линз, зеркал, призм и стеклянных корректоров.
- Линейные размеры диаметров дисков Солнца и Луны в фокальной плоскости объектива телескопа вычисляются по формуле
- ,
где — диаметр диска Солнца в фокусе в миллиметрах, а — фокусное расстояние объектива в миллиметрах.
- Масштаб фотонегатива (или ПЗС)
- ,
где — масштаб в угловых минутах на миллиметр ('/мм), а — фокусное расстояние объектива в миллиметрах. Если известны линейные размеры ПЗС матрицы, её разрешение и размер её пикселов, то тогда отсюда можно вычислить разрешение цифрового снимка в угловых минутах на пиксел.
Радиотелескопы
Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр — чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.
Космические телескопы
Земная атмосфера хорошо пропускает излучение в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6 — 2 мкм) и радиодиапазонах (1 мм — 30 м). Уже в ближнем ультрафиолетовом диапазоне с уменьшением длины волны прозрачность атмосферы сильно ухудшается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей: высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению. Примером такой системы может служить телескоп C.A.C.T.U.S..
В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды, инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить англ. South Pole Telescope, установленный на южном географическом полюсе, работающий в субмиллиметровом диапазоне.
В некоторых случаях удается решить проблему атмосферы подъемом телескопов или детекторов в воздух на самолетах или стратосферных баллонах. Но, наибольшие результаты достигаются с выносом телескопов в космос. Космическая астрономия — единственный способ получить информацию о вселенной в коротковолновом и, по большей части, в инфракрасном диапазоне; способ сильно улучшить разрешающую способность радиоинтерферометров. Оптические наблюдения из космоса не столь привлекательны в свете современного развития адаптивной оптики, позволяющей сильно снизить влияние атмосферы на качество изображения, а также дороговизны вывода на орбиту телескопа с зеркалом, сравнимым по размерам с крупными наземными телескопами.
Крупнейшие оптические телескопы
Телескопы-рефракторы
Обсерватория | Местонахождения | Диаметр, дюйм/см | Год сооружения — демонтажа | Примечания |
---|---|---|---|---|
Йеркская обсерватория | Уильямс Бэй, Висконсин | 40/102 | 1897 | Рефрактор Кларка |
Обсерватория Лика | гора Гамильтон, Калифорния | 36/91 | 1888 | |
Парижская Обсерватория | Медон, Франция | 33/83 | 1893 | Двойной, визуальный объектив 83 см, фотографический — 62 см. |
Астрофизическая Обсерватория | Потсдам, Германия | 32/81 | 1899 | Двойной, визуальный 50 см, фотографический 80 см. |
Обсерватория Ниццы | Франция | 30/76 | 1880 | |
Пулковская обсерватория | Санкт-Петербург | 30/76 | 1885 | |
Аллегенская обсерватория | Питтсбург, Пенсильвания | 30/76 | 1917 | Рефрактор Thaw |
Гринвичская обсерватория | Гринвич, Великобритания | 28/71 | 1893 | |
Гринвичская обсерватория | Гринвич, Великобритания | 28/71 | 1897 | Двойной, визуальный 71 см, фотографический 66 |
Обсерватория Архенхольда | Берлин, Германия | 27/70 | 1896 | Самый длинный современный рефрактор |
Солнечные телескопы
Обсерватория | Местонахождения | Диаметр, м | Год сооружения |
---|---|---|---|
Китт-Пик | Тусон, Аризона | 1,60 | 1962 |
Сакраменто-Пик | Санспот, Нью-Мексико | 1,50 | 1969 |
Крымская астрофизическая обсерватория | Крым, Украина | 1,00 | 1975 |
Шведский солнечный телескоп | остров Пальма, Канары | 1,00 | 2002 |
Китт-Пик, 2 штуки в общем корпусе с 1,6 метра | Тусон, Аризона | 0,9 | 1962 |
Тейде | Тенерифе, Канары | 0,9 | 2001 |
Китт-Пик | Тусон, Аризона | 0,7 | 1973 |
Институт физики Солнца, Германия | Тенерифе, Канары | 0,7 | 1988 |
Митака | Токио, Япония | 0,66 | 1920 |
Камеры Шмидта
Обсерватория | Местонахождения | Диаметр коррекционной пластины — зеркала, м | Год сооружения |
---|---|---|---|
Обсерватория Карла Шварцшильда | Таутенбург, Германия | 1,3-2,0 | 1960 |
Паломарская обсерватория | гора Паломар, Калифорния | 1,2-1,8 | 1948 |
Англо-австралийская обсерватория | Сайдинг-Спринг, Австралия | 1,2-1,8 | 1973 |
Токийская астрономическая обсерватория | Токио, Япония | 1,1-1,5 | 1975 |
Европейская южная обсерватория | Ла-Силья, Чили | 1,1-1,5 | 1971 |
Телескопы-рефлекторы
Название | Местонахождения | Диаметр зеркала, м | Год сооружения |
---|---|---|---|
Гигантский южно-африканский телескоп, SALT | Сазерлэнд, ЮАР | 11 | 2005 |
Gran Telescopio Canarias | Ла-Пальма, Канары | 10,4 | 2002 |
Телескопы Кек | Мауна-Кеа, Гавайи | 9,82 × 2 | 1993, 1996 |
Телескоп Хобби-Эберли, HET | Джефф-Дэвис, Техас | 9,2 | 1997 |
Большой бинокулярный телескоп, LBT | шаблон не поддерживает такой синтаксис, Аризона | 8,4 × 2 | 2004 |
Very Large Telescope, ESO VLT | Серро Параналь, Чили | 8,2 × 4 | 1998, 2001 |
Subaru Telescope | Мауна-Кеа, Гавайи | 8,2 | 1999 |
Gemini North Telescope, GNT | Мауна-Кеа, Гавайи | 8,1 | 2000 |
Gemini South Telescope, GST | Серро Пашон, Чили | 8,1 | 2001 |
шаблон не поддерживает такой синтаксис, MMT | шаблон не поддерживает такой синтаксис, Аризона | 6,5 | 2000 |
Magellan Telescope | Лас Кампанас, Чили | 6,5 × 2 | 2002 |
Большой телескоп азимутальный, БТА | гора Пастухова, Кавказ | 6,0 | 1975 |
Large Zenith Telescope, LZT | Мейпл Ридж, Канада | 6,0 | 2001 |
G.E.Hale 200-inch Telescope, MMT | гора Паломар, Калифорния | 5,08 | 1948 |
Известные производители любительских телескопов
Примечания
- ↑ 1 2 БСЭ. Статья «Телескоп (астрономич.)»
- ↑ Пахомов И. И., Рожков О. В. Оптико-электронные квантовые приборы. — 1-е изд. — М.: Радио и связь, 1982. — С. 184. — 456 с.
- ↑ 1 2 Ландсберг Г. С. Оптика. — 6-е изд. — М.: Физматлит, 2003. — С. 303. — 848 с. — ISBN 5-9221-0314-8.
- ↑ В. А. Гуриков. История создания телескопа. Историко-астрономические исследования, XV / Отв. ред. Л. Е. Майстров — М., Наука, 1980.
- ↑ С. И. Вавилов. Галилей в истории оптики // УФН. — 1964. — Т. 64. — № 8. — С. 583—615.
- ↑ 1 2 Панов В. А. Справочник конструктора оптико-механических приборов. — 1-е изд. — Л.: Машиностроение, 1991. — С. 81.
- ↑ Турыгин И. А. Прикладная оптика. — 1-е изд. — М.: Машиностроение, 1966.
Литература
- Чикин А. А. «Отражательные телескопы», Петроград, 1915.
- Дагаев М. М., Чаругин В. М. «АСТРОФИЗИКА: книга для чтения по астрономии», издательство «Просвещение», 1988.
См. также
- Список астрономических инструментов
- Список космических аппаратов с рентгеновскими и гамма-детекторами на борту
- Линза Барлоу
- Обсерватория
- Астрономическая обсерватория
- Список кодов обсерваторий
- Телескоп Хаббл
- Гигантский Магелланов телескоп
- PS1 программы Pan-STARRS
- Гелиоскоп
Ссылки
На русском языке
- Большая подборка информации про телескопы на Astrolab.ru
- «АиТ» — Астрономия и телескопостроение
- - Описание фокусера телескопа на сайте Астротуриста
- Калькулятор характеристик оптического телескопа
На других языках
Это заготовка статьи по астрономии. Помогите Википедии, дополнив её. |