Уран-235: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
пожалуйста укажите на странице обсуждения конкретные ошибки и причины переформулировки
м откат правок Hullernuc (обс) к версии Kerosh
Строка 75: Строка 75:
=== Цепная ядерная реакция ===
=== Цепная ядерная реакция ===
{{Main|Цепная ядерная реакция}}
{{Main|Цепная ядерная реакция}}
При распаде одного ядра <sup>235</sup>U обычно испускается 2-3 нейтрона (в среднем за акт деления возникает 2.5 свободных нейтрона). Каждый нейтрон, образовавшийся при распаде ядра <sup>235</sup>U, при попадании в другое ядро <sup>235</sup>U может вызвать новый акт распада, это явление называется ''[[Цепная_ядерная_реакция|цепной ядерной реакцией]]''.
Каждый нейтрон, образовавшийся при распаде ядра урана-235, при попадании в другое ядро может вызвать образование [[составное ядро|составного ядра]] с дальнейшим его распадом и испусканием в среднем 2-3-х нейтронов, тогда количество нейтронов после второго этапа распада ядер будет равно, к примеру, 3² = 9. С каждым последующим этапом количество образующихся нейтронов будет нарастать лавинообразно. Это явление и называется ''цепной ядерной реакцией''. Если такая реакция является самоподдерживающейся, то она называется критической (''критическое состояние''); масса вещества (в данном случае урана), необходимая для создания критического состояния, называется ''[[Критическая масса|критической массой]]''<ref name="fialkov"/>. Однако в реальных условиях достичь критического состояния не так просто, так как на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из <sup>235</sup>U, 99,2745 % составляет уран-238<ref name="Nubase2003"/>, который поглощает нейтроны, образующиеся при делении ядер урана-235. Кроме того, при распаде <sup>235</sup>U образуются [[быстрые нейтроны]], в то время как [[Ядерное эффективное сечение|сечение]] поглощения быстрого нейтрона ядром <sup>235</sup>U с последующим делением существенно ниже по сравнению с сечением деления под воздействием [[Тепловые нейтроны|тепловых нейтронов]]. Это приводит к тому, что в природном уране цепная реакция очень быстро затухает. Осуществить незатухающую цепную реакцию можно несколькими основными путями<ref name="fialkov"/>:

* Осуществить разделение изотопов, повысив таким образом содержание урана-235 в образце. В этом случае потеря нейтронов будет происходить лишь через поверхность образца. Эту потерю можно предотвратить с помощью различного рода отражателей. Тем не менее, возможно достижение критического состояния и без использования отражателей — за счёт увеличения количества вещества до значения, превышающего значение критической массы;
Гипотетически, количество нейтронов после второго этапа распада ядер может превышать 3² = 9. С каждым последующим этапом количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях, свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата <sup>235</sup>U или будучи захвачены иными материалами (например <sup>238</sup>U).
* Более существенное влияние может оказать [[замедление нейтронов]], выделяющихся при делении. Отношения сечений поглощения тепловых нейтронов ураном-238 и ураном-235 в зависимости от энергии делящего нейтрона выше в 25-125 раз, чем быстрых, следовательно доля нейтронов, поглощённых ураном-238 резко уменьшится<ref name="Б" />.

Если в среднем каждый акт деления порождает один новый акт деления, то реакция становится самоподдерживающейся и это состояние называется [[Реактивность_ядерного_реактора|критическим]] . (см. также [[Коэффициент_размножения_нейтронов|Коэффициент_размножения_нейтронов]])

В реальных условиях достичь критического состояния урана не так просто, ведь на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из <sup>235</sup>U, 99,2745 % составляет <sup>238</sup>U<ref name="Nubase2003"/>, который поглощает нейтроны, образующиеся при делении ядер <sup>235</sup>U. Кроме того, при распаде <sup>235</sup>U образуются [[быстрые нейтроны]], в силу особенностей соотношения [[Ядерное_эффективное_сечение|сечений захвата]] <sup>235</sup>U и <sup>238</sup>U, при снижении скорости свободных нейтронов(образовании [[Тепловые нейтроны|тепловых нейтронов]]) - реактивность материала возрастает. Это приводит к тому, что в природном уране в настоящее время цепная реакция очень быстро затухает. Осуществить незатухающую цепную реакцию можно несколькими основными путями<ref name="fialkov"/>:
* Увеличение объёма образца (для выделенного из руды урана, возможно достижение [[Критическая масса|критической массы]] за счёт увеличения объёма);
* Осуществить разделение изотопов, повысив содержание <sup>235</sup>U в образце;
* Сократить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
* Использование замедлителя для повышение концентрации [[Тепловые нейтроны|тепловых нейтронов]].


== Изомеры ==
== Изомеры ==

Версия от 22:22, 10 ноября 2011

Уран-235
Название, символ Уран-235, 235U
Альтернативные названия актиноура́н, AcU
Нейтронов 143
Свойства нуклида
Атомная масса 235,0439299(20)[1] а. е. м.
Дефект массы 40 920,5(18)[1] кэВ
Удельная энергия связи (на нуклон) 7 590,907(8)[1] кэВ
Изотопная распространённость 0,7200(51) %[2]
Период полураспада 7,04(1)⋅108[2] лет
Продукты распада 231Th
Родительские изотопы 235Pa (β)
235Np (ε)
239Pu (α)
Спин и чётность ядра 7/2[2]
Канал распада Энергия распада
α-распад 4,6783(7)[1] МэВ
SF
20Ne, 25Ne, 28Mg
Таблица нуклидов
Логотип Викисклада Медиафайлы на Викискладе

Ура́н-235 (англ. uranium-235), историческое название актиноура́н (лат. Actin Uranium, обозначается символом AcU) — радиоактивный нуклид химического элемента урана с атомным номером 92 и массовым числом 235. Изотопная распространённость урана-235 в природе составляет 0,7200(51) %[2]. Является родоначальником радиоактивного семейства 4n+3, называемого рядом актиния. Открыт в 1935 году Артуром Демпстером (англ. Arthur Jeffrey Dempster)[3][4].

В отличие от другого, наиболее распространенного изотопа урана 238U, в 235U возможна самоподдерживающаяся цепная ядерная реакция. Поэтому этот изотоп используется как топливо в ядерных реакторах, а также в ядерном оружии.

Активность одного грамма этого нуклида составляет приблизительно 80 кБк.

Образование и распад

Уран-235 образуется в результате следующих распадов:

  • K-захват, осуществляемый нуклидом 235Np (период полураспада составляет 396,1(12)[2] дня):
  • α-распад нуклида 239Pu (период полураспада составляет 2,411(3)⋅104[2] лет):

Распад урана-235 происходит по следующим направлениям:

Вынужденное деление

Кривая выхода продуктов деления урана-235 для различных энергий делящих нейтронов.

В начале 1930-х гг. Энрико Ферми проводил облучение урана нейтронами, преследуя цель получить таким образом трансурановые элементы. Но в 1939 г. О. Ган и Ф. Штрассман смогли показать, что при поглощении нейтрона ядром урана происходит вынужденная реакция деления. Как правило, ядро делится на два осколка, при этом высвобождается 2-3 нейтрона (см. схему)[5].

В продуктах деления урана-235 было обнаружено около 300 изотопов различных элементов: от Z=30 (цинк) до Z=64 (гадолиний). Кривая зависимости относительного выхода изотопов, образующихся при облучении урана-235 медленными нейтронами, от массового числа — симметрична и по форме напоминает букву «M». Два выраженных максимума этой кривой соответствуют массовым числам 95 и 134, а минимум приходится на диапазон массовых чисел от 110 до 125. Таким образом, деление урана на осколки равной массы (с массовыми числами 115—119) происходит с меньшей вероятностью, чем асимметричное деление[5], такая тенденция наблюдается у всех делящихся изотопов и не связана с какими-то индивидуальными свойствами ядер или частиц, а присуща самому механизму деления ядра. Однако асимметрия уменьшается при увеличении энергии возбуждения делящегося ядра и при энергии нейтрона более 100 МэВ распределение осколков деления по массам имеет один максимум, соответствующий симметричному делению ядра.

Один из вариантов вынужденного деления урана-235 после поглощения нейтрона (схема)

Осколки, образующиеся при делении ядра урана, в свою очередь являются радиоактивными, и подвергаются цепочке β-распадов, при которых постепенно в течение длительного времени выделяется дополнительная энергия. Средняя энергия, выделяющаяся при распаде одного ядра урана-235 с учётом распада осколков, составляет приблизительно 202,5 МэВ = 3,244⋅10−11 Дж, или 19,54 ТДж/моль = 83,14 ТДж/кг[6].

Деление ядер — лишь один из множества процессов, возможных при взаимодействии нейтронов с ядрами, именно он лежит в основе работы любого ядерного реактора[7].

Цепная ядерная реакция

При распаде одного ядра 235U обычно испускается 2-3 нейтрона (в среднем за акт деления возникает 2.5 свободных нейтрона). Каждый нейтрон, образовавшийся при распаде ядра 235U, при попадании в другое ядро 235U может вызвать новый акт распада, это явление называется цепной ядерной реакцией.

Гипотетически, количество нейтронов после второго этапа распада ядер может превышать 3² = 9. С каждым последующим этапом количество образующихся нейтронов может нарастать лавинообразно. В реальных условиях, свободные нейтроны могут не порождать новый акт деления, покидая образец до захвата 235U или будучи захвачены иными материалами (например 238U).

Если в среднем каждый акт деления порождает один новый акт деления, то реакция становится самоподдерживающейся и это состояние называется критическим . (см. также Коэффициент_размножения_нейтронов)

В реальных условиях достичь критического состояния урана не так просто, ведь на протекание реакции влияет ряд факторов. Например, природный уран лишь на 0,72 % состоит из 235U, 99,2745 % составляет 238U[2], который поглощает нейтроны, образующиеся при делении ядер 235U. Кроме того, при распаде 235U образуются быстрые нейтроны, в силу особенностей соотношения сечений захвата 235U и 238U, при снижении скорости свободных нейтронов(образовании тепловых нейтронов) - реактивность материала возрастает. Это приводит к тому, что в природном уране в настоящее время цепная реакция очень быстро затухает. Осуществить незатухающую цепную реакцию можно несколькими основными путями[5]:

  • Увеличение объёма образца (для выделенного из руды урана, возможно достижение критической массы за счёт увеличения объёма);
  • Осуществить разделение изотопов, повысив содержание 235U в образце;
  • Сократить потерю свободных нейтронов через поверхность образца с помощью применения различного рода отражателей;
  • Использование замедлителя для повышение концентрации тепловых нейтронов.

Изомеры

Известен единственный изомер 235Um со следующими характеристиками[2]:

  • Избыток массы: 40 920,6(1,8) кэВ
  • Энергия возбуждения: 76,5(4) эВ
  • Период полураспада: 26 мин
  • Спин и чётность ядра: 1/2+

Распад изомерного состояния осуществляется путём изомерного перехода в основное состояние.

Применение

  • Уран-235 используется в качестве топлива для ядерных реакторов, в которых осуществляется управляемая цепная ядерная реакция деления;
  • Уран с высокой степенью обогащения применяется для создания ядерного оружия. В этом случае для высвобождения большого количества энергии (взрыва) используется неуправляемая цепная ядерная реакция.

См. также

Изотопы урана

Разделение изотопов

Примечания

  1. 1 2 3 4 5 Audi G., Wapstra A. H., Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A. — 2003. — Vol. 729. — P. 337—676. — doi:10.1016/j.nuclphysa.2003.11.003. — Bibcode2003NuPhA.729..337A.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 Audi G., Bersillon O., Blachot J., Wapstra A. H. The NUBASE evaluation of nuclear and decay properties // Nuclear Physics A. — 2003. — Т. 729. — С. 3—128. — doi:10.1016/j.nuclphysa.2003.11.001. — Bibcode2003NuPhA.729....3A.Открытый доступ
  3. Гофман К. Можно ли сделать золото?. — 2-е изд. стер. — Л.: Химия, 1987. — С. 130. — 232 с. — 50 000 экз.
  4. Today in science history
  5. 1 2 3 Фиалков Ю. Я. Применение изотопов в химии и химической промышленности. — Киев: Техніка, 1975. — С. 87. — 240 с. — 2 000 экз.
  6. Table of Physical and Chemical Constants, Sec 4.7.1: Nuclear Fission. Kaye & Laby Online.
  7. Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчета ядерных энергетических реакторов. — Москва: Энергоатомиздат, 1982. — С. 512.