F-тест: различия между версиями
[непроверенная версия] | [непроверенная версия] |
MyWikiNik (обсуждение | вклад) |
MyWikiNik (обсуждение | вклад) |
||
Строка 42: | Строка 42: | ||
Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов - [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) - следующим образом: |
Описанный выше F-тест является ''точным'' в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов - [[тест Вальда|теста Вальда]] (W), [[тест множителей Лагранжа|теста множителей Лагранжа]](LM) и [[тест отношения правдоподобия|теста отношения правдоподобия]] (LR) - следующим образом: |
||
<math>F=\frac {n-k}{ |
<math>F=\frac {n-k}{q} W/n ~,~ F=\frac {n-k}{q} \frac {LM} {n-LM} ~,~F=\frac {n-k}{q}e^{LR/n}</math> |
||
Все эти статистики асимптотически имеют распределение F(q,n-k), несмотря на то, что их значения на малых выборках могут различаться. |
Все эти статистики асимптотически имеют распределение F(q,n-k), несмотря на то, что их значения на малых выборках могут различаться. |
Версия от 17:28, 24 февраля 2012
F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на "степени свободы"). Чтобы статистика имела распределение Фишера необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение Хи-квадрат. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.
Тест проводится путем сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если , то . Кроме того, квантили распределения Фишера обладают свойством . Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе - меньшая и сравнение осуществляется с "правой" квантилью распределения. Тем не менее тест может быть и двусторонним и односторонним. В первом случае при уровне значимости используется квантиль , а при одностороннем тесте [1]. П
Более удобный способ проверки гипотез - с помощью p-значения p(F) - вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если p(F) (для двустороннего теста - 2p(F)) меньше уровня значимости , то нулевая гипотеза отвергается, в противном случае принимается.
Примеры F-тестов
F-тест на равенство дисперсий
Две выборки
Пусть имеются две выборки объемом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста
где - выборочная дисперсия.
Если статистика больше критического, то дисперсии не одинаковы, в противном случае дисперсии выборок одинаковы
Несколько выборок
Пусть выборка объемом N случайной величины X разделена на k групп с количеством наблюдений n_i в i-ой группе.
Межгрупповая ("объясненная") дисперсия:
Внутригрупповая ("необъясненная") дисперсия:
Данный тест можно свести к тестированию значимости регрессии переменной X на фиктивные переменные-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве дисперсий в выборках отвергается, в противном случае дисперсии можно считать одинаковыми.
Проверка ограничений на параметры регрессии
Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле:
где q-количество ограничений, n-объем выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, R^2-коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений).
Замечание
Описанный выше F-тест является точным в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов - теста Вальда (W), теста множителей Лагранжа(LM) и теста отношения правдоподобия (LR) - следующим образом:
Все эти статистики асимптотически имеют распределение F(q,n-k), несмотря на то, что их значения на малых выборках могут различаться.
Проверка значимости линейной регрессии
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза - об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель - это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна: