Среднее степенное: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
м r2.6.4) (робот добавил: ta:அடுக்குச் சராசரி
м r2.6.5) (робот добавил: eu:Batezbesteko orokortu
Строка 57: Строка 57:
[[en:Generalized mean]]
[[en:Generalized mean]]
[[es:Media generalizada]]
[[es:Media generalizada]]
[[eu:Batezbesteko orokortu]]
[[gl:Media xeralizada]]
[[gl:Media xeralizada]]
[[hu:Hatványközép]]
[[hu:Hatványközép]]

Версия от 14:58, 9 марта 2012

Среднее степени d (или просто среднее степенное) набора положительных вещественных чисел определяется как

При этом по непрерывности доопределяются следующие величины:

Среднее степенное является частным случаем Колмогоровского среднего.

Другие названия

Т.к. среднее степени d обобщает известные с древности (т.н. архимедовы) средние, то его часто называют средним обобщённым.

По связи с неравенствами Минковского и Гёльдера среднее степенное имеет также названия: среднее по Гёльдеру и среднее по Минковскому.

Частные случаи

Средние степеней 0, ±1, 2 и имеют собственные имена:

(иначе говоря: средним арифметическим n чисел является их сумма, деленная на n)

(иначе говоря: средним геометрическим n чисел является корень n-ой степени из произведения этих чисел)

  • называется средним гармоническим.

(иначе говоря: средним гармоническим чисел является обратная величина к среднему арифметическому их обратных)

  • называется средним квадратичным (квадратическим), известным так же под сокращением RMS (root-mean-square).
  • В статистической практике также находят применение степенные средние третьего и более высоких порядков. Наиболее распространенными из них являются среднее кубическое и среднее биквадратическое значения.
  • Максимальное и минимальное число из набора положительных чисел выражаются как средние степеней и этих чисел:

Неравенство о средних

Неравенство о средних утверждает, что для

,

причем равенство достигается только в случае равенства всех аргументов .

Для доказательства неравенства о средних достаточно показать, что частная производная по неотрицательна и обращается в ноль только при (например, используя неравенство Йенсена), и далее применить формулу конечных приращений.

Неравенство о среднем арифметическом, геометрическом и гармоническом

Частным случаем неравенства о средних является неравенство о среднем арифметическом, геометрическом и гармоническом

где каждое из неравенств обращается в равенство только при .

См. также

Шаблон:Статистика