Кровообращение: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 1: Строка 1:
[[Файл:Circulatory System ru.svg|thumb|350px|right|]]
[[Файл:Circulatory System ru.svg|thumb|350px|right|]]
'''Кровообраще́ние''' — циркуляция [[кровь|крови]] по организму, обеспечивающая обмен веществ в тканях. Кровь приводится в движение сокращениями [[сердце|сердца]] и циркулирует по [[кровеносный сосуд|сосудам]]. Кровь движется от желудочков до предсердий, но сердечный выброс — перемещение атриовентрикулярных перегородок (АВП) вниз — движет кровь лишь до [[капилляры|капилляров]], где происходит выброс воды и солей в интерстициальную жидкость (ТЖ) и разгрузка [[артериальное давление|артериального давления]] до давления в ТЖ.Центральный вопрос кровообращения — преодоление эритроцитами капилляров, диаметр которых часто превосходит просвет капилляров. [[:en:Fåhræus–Lindqvist effect|Эффект Фареуса — Линдквиста]] указывает на то, что преодоление эритроцитами капилляров в артериальной системе превосходит с помощью гидравлического удара, так как сопротивление в артериальной системе предельно велико. Только гидравлическим ударом можно объяснить наблюдаемое исследователями спонтанное ускорение в 5 — 10 раз кровотока в капиллярах в покоящейся мышце при стабильным давлении в артериолах.
'''Кровообраще́ние''' — циркуляция [[кровь|крови]] по организму, обеспечивающая обмен веществ в тканях. Кровь приводится в движение сокращениями [[сердце|сердца]] и циркулирует по [[кровеносный сосуд|сосудам]]. Кровь движется от предсердий до желудочков, но сердечный выброс — перемещение атриовентрикулярных перегородок (АВП) вниз — движет кровь лишь до [[капилляры|капилляров]], где происходит выброс воды и солей в интерстициальную жидкость (ТЖ) и разгрузка [[артериальное давление|артериального давления]] до давления в ТЖ.Центральный вопрос кровообращения — преодоление эритроцитами капилляров, диаметр которых часто превосходит просвет капилляров. [[:en:Fåhræus–Lindqvist effect|Эффект Фареуса — Линдквиста]] указывает на то, что преодоление эритроцитами капилляров в артериальной системе превосходит с помощью гидравлического удара, так как сопротивление в артериальной системе предельно велико. Только гидравлическим ударом можно объяснить наблюдаемое исследователями спонтанное ускорение в 5 — 10 раз кровотока в капиллярах в покоящейся мышце при стабильным давлении в артериолах.
Дальше происходит [[реабсорбция]] воды, солей и продуктов жизнедеятельности клеток из ТЖ в посткапилляры под действием присасывающей силы предсердий (жидкостный вакуум — перемещение атриовентрикулярных перегородок вниз) и далее — самотёком под действием сил гравитации. Перемещение АВП вверх приводит к систоле предсердий и одновременно к диастоле желудочков.
Дальше происходит [[реабсорбция]] воды, солей и продуктов жизнедеятельности клеток из ТЖ в посткапилляры под действием присасывающей силы предсердий (жидкостный вакуум — перемещение атриовентрикулярных перегородок вниз) и далее — самотёком под действием сил гравитации. Перемещение АВП вверх приводит к систоле предсердий и одновременно к диастоле желудочков.



Версия от 08:43, 4 апреля 2012

Кровообраще́ние — циркуляция крови по организму, обеспечивающая обмен веществ в тканях. Кровь приводится в движение сокращениями сердца и циркулирует по сосудам. Кровь движется от предсердий до желудочков, но сердечный выброс — перемещение атриовентрикулярных перегородок (АВП) вниз — движет кровь лишь до капилляров, где происходит выброс воды и солей в интерстициальную жидкость (ТЖ) и разгрузка артериального давления до давления в ТЖ.Центральный вопрос кровообращения — преодоление эритроцитами капилляров, диаметр которых часто превосходит просвет капилляров. Эффект Фареуса — Линдквиста указывает на то, что преодоление эритроцитами капилляров в артериальной системе превосходит с помощью гидравлического удара, так как сопротивление в артериальной системе предельно велико. Только гидравлическим ударом можно объяснить наблюдаемое исследователями спонтанное ускорение в 5 — 10 раз кровотока в капиллярах в покоящейся мышце при стабильным давлении в артериолах. Дальше происходит реабсорбция воды, солей и продуктов жизнедеятельности клеток из ТЖ в посткапилляры под действием присасывающей силы предсердий (жидкостный вакуум — перемещение атриовентрикулярных перегородок вниз) и далее — самотёком под действием сил гравитации. Перемещение АВП вверх приводит к систоле предсердий и одновременно к диастоле желудочков.

Кровь снабжает ткани организма кислородом, питательными веществами, гормонами и доставляет продукты обмена веществ к органам их выделения. Обогащение крови кислородом происходит в лёгких, а насыщение питательными веществами — органах пищеварения. В печени и почках происходит нейтрализация и вывод продуктов метаболизма. Кровообращение регулируется гормонами и нервной системой. Различают малый (через лёгкие) и большой (через органы и ткани) круги кровообращения.

Кровообращение — важный фактор в жизнедеятельности организма человека и ряда животных. Кровь может выполнять свои разнообразные функции только находясь в постоянном движении.

Историческая справка

Еще исследователи далёкой древности предполагали, что в живых организмах все органы функционально связаны и оказывают влияние друг на друга. Высказывались самые различные предположения. Еще Гиппократ — отец медицины, и Аристотель — крупнейший греческий мыслитель, жившие почти 2500 лет назад, интересовались вопросами кровообращения и изучали его. Однако их представления были не совершенны и во многих случаях ошибочны. Венозные и артериальные кровеносные сосуды они представляли как две самостоятельные системы, не соединённые между собой. Считалось, что кровь движется только по венам, в артериях же находится воздух. Это обосновывали тем, что при вскрытии трупов людей и животных в венах кровь была, а артерии были пустые, без крови.

Это убеждение было опровергнуто в результате трудов римского исследователя и врача Клавдия Галена (130—200). Он экспериментально доказал, что кровь движется сердцем и по артериям, и по венам.

После Галена вплоть до XVII века считали, что кровь из правого предсердия попадает в левое каким-то образом через перегородку.

В 1628 году английский физиолог, анатом и врач Уильям Гарвей (1578—1657 г.) опубликовал свой труд «Анатомическое исследование о движении сердца и крови у животных», в котором впервые[1] в истории медицины экспериментально показал, что кровь движется от желудочков сердца по артериям и возвращается к предсердиям по венам. Несомненно, обстоятельством, которое более других привело Уильяма Гарвея к осознанию того, что кровь циркулирует, явилось наличие в венах клапанов, функционирование которых есть пассивный гидродинамический процесс. Он понял, что это могло бы иметь смысл только в том случае, если кровь в венах течёт к сердцу, а не от него, как предположил Гален и как полагала европейская медицина до времён Гарвея. Гарвей был также первым, кто количественно оценил сердечный выброс у человека, и преимущественно благодаря этому, несмотря на огромную недооценку (1020,6 г, то есть около 1 л/мин вместо 5 л/мин), скептики убедились, что артериальная кровь не может непрерывно создаваться в печени, и, следовательно, она должна циркулировать. Таким образом, им была построена современная схема кровообращения человека и других млекопитающих, включающая два круга (см. ниже). Невыясненным оставался вопрос о том, как кровь попадает из артерий в вены.

Занимательно, что именно в год публикации революционного труда Гарвея (1628) родился Марчелло Мальпиги, который 50 лет спустя открыл капилляры — звено кровеносных сосудов, которое соединяет артерии и вены, — и таким образом завершил описание замкнутой сосудистой системы.

Самые первые количественные измерения механических явлений в кровообращении были сделаны Стивеном Хейлзом (1677—1761 г.), который измерил артериальное и венозное кровяное давление, объем отдельных камер сердца и скорость вытекания крови из нескольких вен и артерий, продемонстрировав таким образом, что большая часть сопротивления течению крови приходится на область микроциркуляции. Он полагал, что вследствие упругости артерий течение крови в венах более или менее установившееся, а не пульсирующее, как в артериях.

Позже, в XVIII и XIX вв. ряд известных гидромехаников заинтересовались вопросами циркуляции крови и внесли существенный вклад в понимание этого процесса. Среди них были Эйлер, Даниил Бернулли (бывший на самом деле профессором анатомии) и Пуазейль (также врач; его пример особенно показывает, как попытка решить частную прикладную задачу может привести к развитию фундаментальной науки). Одним из крупнейших учёных-универсалов был Томас Юнг (1773—1829 г.), также врач, чьи исследования в оптике привели к принятию волновой теории света и пониманию восприятия цвета. Другая важная область исследований касается природы упругости, в частности свойств и функции упругих артерий; его теория распространения волн в упругих трубках до сих пор считается фундаментальным корректным описанием пульсового давления в артериях. Именно в его лекции по этому вопросу в Королевском обществе в Лондоне содержится явное заявление, что «вопрос о том, каким образом и в какой степени циркуляция крови зависит от мышечных и упругих сил сердца и артерий в предположении, что природа этих сил известна, должен стать просто вопросом наиболее усовершенствованных разделов теоретической гидравлики».

В 1843 г. чешский физиолог Ян Пуркине (Purkinje J.E. Jahresber. D. schls. Ges. F. Vater. Cultur. Breslau. 1843, S. 157) наблюдая за обнаженным сердцем, заметил, что во время систолы желудочков основание сердца приближается к малоподвижной его верхушке, а объем правого предсердия после своего сокращения увеличивается. Эти наблюдения позволили Пуркине высказать гипотезу о присасывающем действии сердца во время систолы. Некоторые анатомы, заметившие эти же явления, поддержали гипотезу Пуркине, а один из них изобразил изменение формы желудочков и предсердий во время диастолы и систолы: Rollet A. 1880. Physiologie der Blutbewegung. In: Handbuch der Physiologie, Band 4. S. 146; Leipzig В начале ХХ века академик И. П. Павлов, лауреат Нобелевской премии 1904 года за классические труды по физиологии кровообращения и пищеварения (СЭС, 1978), впервые в мире показал, что сердце не два, а четыре насоса. Но в начале ХХ века не смогли обосновать и доказать почему у насоса-модели давление было то выше атмосферного, то ниже атмосферного, а непосредственно на живом сердце — все время давление было выше атмосферного. В конце ХХ века удалось обосновать и доказать, почему давление в сердечно-сосудистой системе выше атмосферного — так как давление в ТЖ около 25 мм рт. ст. В XX в. было показано, что для венозного возврата (см. ниже) существенную роль играют так же сокращения скелетных мышц и присасывающее действие грудной клетки[2].

Круги кровообращения человека

Циркуляция крови через сердце. Малый круг кровообращения проходит через правое предсердие, правый желудочек, лёгочную артерию, сосуды лёгких, лёгочные вены. Большой круг проходит через левые предсердие и желудочек, аорту, сосуды органов, верхнюю и нижнюю полые вены. Направление движения крови регулируется клапанами сердца.

Кровообращение происходит по двум основным путям, называемым кругами: малому и большому кругу кровообращения.

По малому кругу кровь циркулирует через лёгкие. Движение крови по этому кругу начинается с сокращения правого предсердия, после чего кровь поступает в правый желудочек сердца, сокращение которого толкает кровь в легочный ствол. Циркуляция крови в этом направлении регулируется предсердно-желудочковой перегородкой и двумя клапанами: трёхстворчатым (между правым предсердием и правым желудочком), предотвращающим возврат крови в предсердие, и клапаном лёгочной артерии, предотвращающим возврат крови из лёгочного ствола в правый желудочек. Легочной ствол разветвляется до сети легочных капилляров, где кровь насыщается кислородом за счёт вентиляции лёгких. Затем кровь через лёгочные вены возвращается из лёгких в левое предсердие.

Большой круг кровообращения снабжает насыщенной кислородом кровью органы и ткани. Левое предсердие сокращается одновременно с правым и толкает кровь в левый желудочек. Из левого желудочка кровь поступает в аорту. Аорта разветвляется на артерии и артериолы, идущие в различные части организма и заканчивающиеся капиллярной сетью в органах и тканях. Циркуляция крови в этом направлении регулируется предсердно-желудочковой перегородкой, двустворчатым (митральным) клапаном и клапаном аорты.

Таким образом, кровь движется по большому кругу кровообращения от левого желудочка до правого предсердия, а затем по малому кругу кровообращения от правого желудочка до левого предсердия.

Механизм кровообращения

Это утверждение полностью справедливо для артерий и артериол. Движение артериальной крови желудочками происходит до изофигмической точки капилляров, где происходит выброс воды и солей в интерстициальную жидкость (ТЖ) и разгрузка артериального давления до давления в ТЖ, величина которого около 25 мм рт. ст. Дальше происходит обратное всасывание воды, солей и продуктов жизнедеятельности клеток из ТЖ в посткапилляры под действием присасывающей силы предсердий (жидкостный вакуум — перемещение атриовентрикулярных перегородок вниз) и далее — самотёком под действием сил гравитации к предсердиям. Перемещение АВП вверх приводит к систоле предсердий и одновременно к диастоле желудочков. Разность давлений создаётся ритмической работой предсердий и желудочков сердца, перекачивающего кровь из вен в артерии.

Сердечный цикл

Правая половина сердца и левая работают синхронно. Для удобства изложения здесь будет рассмотрена работа левой половины сердца.

Сердечный цикл включает в себя общую диастолу (расслабление), систолу (сокращение) предсердий, систолу желудочков. Во время общей диастолы давление в полостях сердца близко к нулю, в аорте медленно понижается с систолического до диастолического, в норме у человека равными соответственно 120 и 80 мм рт. ст. Поскольку давление в аорте выше, чем в желудочке, аортальный клапан закрыт. Давление в крупных венах (центральное венозное давление, ЦВД) составляет 2—3 мм рт.ст., то есть чуть выше, чем в полостях сердца, так что кровь поступает в предсердия и, транзитом, в желудочки. Предсердно-желудочковые клапаны в это время открыты.

Во время систолы предсердий циркулярные мышцы предсердий пережимают вход из вен в предсердия, что препятствует обратному потоку крови, давление в предсердиях повышается до 8—10 мм рт.ст., и кровь перемещается в желудочки.

Во время последующей систолы желудочков давление в них становится выше давления в предсердиях (которые начинают расслабляться), что приводит к закрытию предсердно-желудочковых клапанов. Внешним проявлением этого события является I тон сердца. Затем давление в желудочке превышает аортальное, в результате чего открывается клапан аорты и начинается изгнание крови из желудочка в артериальную систему. Расслабленное предсердие в это время заполняется кровью. Физиологическое значение предсердий главным образом состоит в роли промежуточного резервуара для крови, поступающей из венозной системы во время систолы желудочков.

В начале общей диастолы, давление в желудочке падает ниже аортального (закрытие аортального клапана, II тон), потом ниже давления в предсердиях и венах (открытие предсердно-желудочковых клапанов), желудочки снова начинают заполняться кровью.

В состоянии спокойствия желудочек сердца взрослого человека за каждую систолу выбрасывает от 75 мл крови (ударный объём). Сердечный цикл длится 0,8 с, соответственно, сердце делает от 60 сокращений в минуту (частота сердечных сокращений, ЧСС). Нетрудно подсчитать, что даже в состоянии покоя сердце перегоняет 4,5 — 5 л крови в минуту (минутный объем сердца, МОС). Во время максимальной нагрузки ударный объём сердца тренированого человека может превышать 200 мл, пульс — превышать 200 ударов в минуту, а циркуляция крови может достигать 40 л в минуту.

Артериальная система

Артерии, которые почти не содержат гладких мышц, но имеют мощную эластическую оболочку, выполняют главным образом «буферную» роль, сглаживая перепады давлений между систолой и диастолой. Стенки артерий упруго растяжимы, что позволяет им принять дополнительный объем крови, «вбрасываемый» сердцем во время систолы, и лишь умеренно, на 50—60 мм рт.ст. поднять давление. Во время диастолы, когда сердце ничего не перекачивает, именно упругое растяжение артериальных стенок поддерживает давление, не давая ему упасть до нуля, и тем самым обеспечивает непрерывность кровотока. Именно растяжение стенки сосуда воспринимается как удар пульса. Артериолы обладают развитой гладкой мускулатурой, благодаря которой способны активно менять свой просвет и, таким образом, регулировать сопротивление кровотоку. Именно на артериолы приходится наибольшее падение давления, и именно они определяют соотношение объёма кровотока и артериального давления. Соответственно, артериолы именуют резистивными сосудами.

Капилляры

Капилляры характеризуются тем, что их сосудистая стенка представлена одним слоем клеток, так что они высоко проницаемы для всех растворенных в плазме крови низкомолекулярных веществ. Здесь происходит обмен веществ между тканевой жидкостью и плазмой крови.

  • при прохождении крови через капилляры плазма крови 40 раз полностью обновляется с интерстициальной (тканевой) жидкостью;
  • объём только диффузии через общую обменную поверхность капилляров организма составляет около 60 л/мин или примерно 85 000 л/сут;
  • давление в начале артериальной части капилляра 37,5 мм рт. ст.;
  • эффективное давление составляет около (37,5 — 28) = 9,5 мм рт. ст.;
  • давление в конце венозной части капилляра, направленное наружу капилляра, 20 мм рт. ст.;
  • эффективное реабсорбционное давление около (20 — 28) = — 8 мм рт. ст.

Венозная система

От органов кровь возвращается через посткапилляры в венулы и вены в правое предсердие по верхней и нижней полым венам, а также по коронарным венам.

Венозный возврат осуществляется по нескольким механизмам. Во-первых, базовый механизмам благодаря перепаду давлений в конце венозной части капилляра, направленное наружу капилляра около 20 мм рт. ст., в ТЖ — 28 мм рт. ст., .), эффективное реабсорбционное давление, направленное внутрь капилляра, около (20 — 28) = минус 8 мм рт. ст (- 8 мм рт. ст.).

Во-вторых, для вен скелетных мышц важно, что при сокращении мышцы давление «извне» превышает давление в вене, так что кровь «выжимается» из вен сократившейся мышцы. Присутствие же венозных клапанов определяет направление движения крови при этом — от артериального конца к венозному. Этот механизм особенно важен для вен нижних конечностей, поскольку здесь кровь по венам поднимается, преодолевая гравитацию. В-третьих, присасывающая роль грудной клетки. Во время вдоха давление в грудной клетке падает ниже атмосферного (которое мы принимаем за ноль), что обеспечивает дополнительный механизм возврата крови. Величина просвета вен, а соответственно и их объём, значительно превышают таковые артерий. Кроме того, гладкие мышцы вен обеспечивают изменение их объёма в весьма широких пределах, приспосабливая их ёмкость к меняющемуся объёму циркулирующей крови. поэтому физиологическая роль вен определяется как «ёмкостные сосуды».

Количественные показатели и их взаимосвязь

Ударный объём сердца (Vcontr) — объём, который левый желудочек выбрасывает в аорту (а правый — в лёгочный ствол) за одно сокращение. У человека равен 50—70 мл.

Минутный объем кровотока (Vminute) — объём крови, проходящий через поперечное сечение аорты (и лёгочного ствола) за минуту. У взрослого человека минутный объём приблизительно равен 5-7 литров.

Частота сердечных сокращений (Freq) — число сокращений сердца в минуту.

Артериальное давление — давление крови в артериях.

Систолическое давление — наивысшее давление во время сердечного цикла, достигаемое к концу систолы.

Диастолическое давление — самое низкое давление во время сердечного цикла, достигается в конце диастолы желудочков.

Пульсовое давление — разность между систолическим и диастолическим.

Среднее артериальное давление (Pmean) проще всего определить в виде формулы. Итак, если артериальное давление во время сердечного цикла является функцией от времени, то

(2)

где tbegin и tend — время начала и конца сердечного цикла, соответственно.

Физиологический смысл этой величины: это такое эквивалентное давление, что, будь оно постоянным, минутный объем кровотока не отличался бы от наблюдаемого в действительности.

Общее периферическое сопротивление — сопротивление, которое сосудистая система оказывает кровотоку. Прямо оно измерено быть не может, но может быть вычислено, исходя из минутного объёма и среднего артериального давления.

(3)

Минутный объём кровотока равен отношению среднего артериального давления к периферическому сопротивлению.

Это утверждение является одним из центральных законов гемодинамики.

Сопротивление одного сосуда с жесткими стенками определяется законом Пуазейля:

(4)

где  — вязкость жидкости, R — радиус и L — длина сосуда.

Для последовательно включенных сосудов, сопротивления складываются:

(5)

Для параллельных, складываются проводимости:

(6)

Таким образом, общее периферическое сопротивление зависит от длины сосудов, числа параллельно включённых сосудов и радиуса сосудов. Понятно, что не существует практического способа узнать все эти величины, кроме того, стенки сосудов не являются жёсткими, а кровь не ведёт себя как классическая Ньютоновская жидкость с постоянной вязкостью. В силу этого, как отмечал В. А. Лищук в «Математической теории кровообращения», «закон Пуазейля имеет для кровообращения скорее иллюстративную, чем конструктивную роль». Тем не менее, понятно, что из всех факторов, определяющих периферическое сопротивление, наибольшее значение имеет радиус сосудов (длина в формуле стоит в 1-й степени, радиус же — в 4-й), и что этот же фактор — единственный, способный к физиологической регуляции. Количество и длина сосудов постоянны, радиус же может меняться в зависимости от тонуса сосудов, главным образом, артериол.

С учётом формул (1), (3) и природы периферического сопротивления, становится понятно, что среднее артериальное давление зависит от объёмного кровотока, который определяется главным образом сердцем (см. (1)) и тонуса сосудов, преимущественно артериол.

Примечания

  1. Некоторые учёные считают, что Андреа Чезальпино был первым, ещё до Гарвея, открывшим кровообращение — он описал большой круг кровообращения.
  2. Аринчин Н. И., Борисевич Г. Ф. Микронасосная деятельность скелетных мышц при их растяжении.— Мн.: Наука и техника, 1986—112 с [1]

См. также

Ссылки

Литература

  • Кровообращение // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Лищук В.А. Математическая теория кровообращения. — 1991.
  • И. П. Павлов «Лекции по физиологии кровообращения 1912—1913 г.г.». «Познавательная книга плюс», 2002
  • Голованов Иван И.
    • «Новая теория кровообращения и здоровье», Москва, 2001
    • «Разгадка тайны кровообращения избавляет от остеопороза, туберкулеза, остеохондроза, аллергии, рака, „внезапной детской смертности“, сердечно-сосудистых и других заболеваний», Москва, 2006
    • «Неординарный взгляд на сердце и сосуды, на их работу, на кровообращение в целом», Москва, 2011

Шаблон:Link FA