Колебательный контур: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
NStorm (обсуждение | вклад) |
удалил пустые разделы, не стаб |
||
Строка 60: | Строка 60: | ||
Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. |
Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC. |
||
== Примечания == |
|||
{{примечания}} |
|||
== См. также == |
== См. также == |
||
Строка 73: | Строка 70: | ||
* [[LR-цепь]] |
* [[LR-цепь]] |
||
* [[Гетеродинный индикатор резонанса]] |
* [[Гетеродинный индикатор резонанса]] |
||
== Ссылки == |
|||
== Литература == |
== Литература == |
||
* Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739) |
* Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739) |
||
* Изюмов Н. М., Линде Д. П. Основы радиотехники. - М.:Радио и связь, 1983 |
* Изюмов Н. М., Линде Д. П. Основы радиотехники. - М.:Радио и связь, 1983 |
||
{{phys-stub}} |
|||
[[Категория:Радиотехника]] |
[[Категория:Радиотехника]] |
Версия от 08:01, 14 августа 2012
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания
Резонансная частота контура определяется так называемой формулой Томсона:
Принцип действия
Пусть конденсатор ёмкостью C заряжен до напряжения . Энергия, запасённая в конденсаторе составляет
При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора . Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
- , где — индуктивность катушки, — максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения .
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Математическое описание процессов
Напряжение, возникающее в катушке при изменении протекающего тока равно
Аналогично для тока, вызванного изменением напряжения на конденсаторе:
Поскольку всё возникающее в катушке напряжение падает на конденсаторе, то , а ток, вызванный конденсатором проходит через катушку, то . Дифференцируя одно из уравнений и подставляя результат в другое, получаем
Это уравнение гармонического осциллятора с циклической частотой (иначе она называется собственной частотой гармонического осциллятора)
Решением такого уравнения является
где — некая постоянная, называемая амплитудой колебаний, — также некоторая постоянная, называемая начальной фазой. И, например, при начальных условиях решение сведётся к
Решение может быть записано также в виде
где и — некоторые константы, которые связаны с амплитудой и фазой следующими отношениями
Комплексное сопротивление (импеданс) колебательного контура
Колебательный контур может быть рассмотрен как двухполюсник, представляющий собой параллельное включение конденсатора и катушки индуктивности. Комплексное сопротивление такого двухполюсника можно записать как
где i — мнимая единица.
Для такого двухполюсника может быть определена т. н. характеристическая частота (или резонансная частота), когда импеданс колебательного контура стремится к бесконечности (знаменатель дроби стремится к нулю).
Эта частота равна
и совпадает по значению с собственной частотой колебательного контура.
Из этого уравнения следует, что на одной и той же частоте может работать множество контуров с разными величинами L и C, но с одинаковым произведением LC.
См. также
- Электрический импеданс
- Многополюсник
- Электромагнитное излучение
- Потенциальная энергия
- Кинетическая энергия
- RC-цепь
- LR-цепь
- Гетеродинный индикатор резонанса
Литература
- Скрипников Ю. Ф. Колебательный контур — М.: Энергия, 1970—128 с.: ил. — (МРБ; Вып. 739)
- Изюмов Н. М., Линде Д. П. Основы радиотехники. - М.:Радио и связь, 1983