Абстрактный автомат: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Нет описания правки |
Wgm (обсуждение | вклад) шаблоны |
||
Строка 29: | Строка 29: | ||
[[Модель]] абстрактного автомата широко используется, как базовая, для построения дискретных моделей автоматов, распознающих, порождающих и преобразующих последовательности [[символ]]ов. |
[[Модель]] абстрактного автомата широко используется, как базовая, для построения дискретных моделей автоматов, распознающих, порождающих и преобразующих последовательности [[символ]]ов. |
||
{{stub}} |
|||
{{rq|sources}} |
|||
[[Категория:Теория автоматов]] |
[[Категория:Теория автоматов]] |
Версия от 10:59, 12 октября 2012
Абстра́ктный автома́т (в теории алгоритмов) — математическая абстракция, модель дискретного устройства, имеющего один вход, один выход и в каждый момент времени находящегося в одном состоянии из множества возможных. На вход этому устройству поступают символы одного алфавита, на выходе оно выдаёт символы (в общем случае) другого алфавита.
Формально абстрактный автомат определяется как пятерка
Где S — конечное множество состояний автомата, X, Y — конечные входной и выходной алфавиты соответственно, из которых формируются строки, считываемые и выдаваемые автоматом, — функция переходов, — функция выходов.
Абстрактный автомат с выделенным начальным состоянием называется инициальным автоматом. Таким образом, абстрактный автомат определяет семейство инициальных автоматов
Если функции переходов и выходов однозначно определены для каждой пары , то автомат называют детерминированным. В противном случае автомат называют недетерминированным или частично определенным.
Если функция переходов и/или функция выходов являются случайными, то автомат называют вероятностным.
Ограничение числа параметров абстрактного автомата определило такое понятие как конечный автомат.
Функционирование автомата состоит в порождении двух последовательностей: последовательности очередных состояний автомата и последовательности выходных символов , которые для последовательности символов разворачиваются в моменты дискретного времени t = 1, 2, 3, … Моменты дискретного времени получили название тактов.
Функционирование автомата в дискретные моменты времени t может быть описано системой рекуррентных соотношений:
Для уточнения свойств абстрактных автоматов введена классификация.
Абстрактные автоматы образуют фундаментальный класс дискретных моделей как самостоятельная модель, и как основная компонента машин Тьюринга, автоматов с магазинной памятью, конечных автоматов и других преобразователей информации.
Модель абстрактного автомата широко используется, как базовая, для построения дискретных моделей автоматов, распознающих, порождающих и преобразующих последовательности символов.
Это заготовка статьи. Помогите Википедии, дополнив её. |
Для улучшения этой статьи желательно:
|