Смешанное произведение: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
MerlIwBot (обсуждение | вклад) м робот добавил: et:Segakorrutis |
|||
Строка 16: | Строка 16: | ||
: <math> ( \mathbf{a}, \mathbf{b}, \mathbf{c} ) = - \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}. </math> |
: <math> ( \mathbf{a}, \mathbf{b}, \mathbf{c} ) = - \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}. </math> |
||
: В частности, |
: В частности, |
||
* Если любые два вектора |
* Если любые два вектора коллинеарны, то с любым третьим вектором они образуют смешанное произведение равное нулю. |
||
* Если три вектора [[линейная независимость|линейно зависимы]] (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю. |
* Если три вектора [[линейная независимость|линейно зависимы]] (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю. |
||
* Геометрический смысл — Смешанное произведение <math> ( \mathbf{a}, \mathbf{b}, \mathbf{c} ) </math> по абсолютному значению равно объёму [[параллелепипед]]а (см. рисунок), образованного векторами <math> \mathbf{a}, \mathbf{b}</math> и <math>\mathbf{c}</math>; знак зависит от того, является ли эта тройка векторов правой или левой. |
* Геометрический смысл — Смешанное произведение <math> ( \mathbf{a}, \mathbf{b}, \mathbf{c} ) </math> по абсолютному значению равно объёму [[параллелепипед]]а (см. рисунок), образованного векторами <math> \mathbf{a}, \mathbf{b}</math> и <math>\mathbf{c}</math>; знак зависит от того, является ли эта тройка векторов правой или левой. |
Версия от 14:30, 13 декабря 2012
Сме́шанное произведе́ние векторов — скалярное произведение вектора на векторное произведение векторов и :
- .
Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее — псевдоскаляр).
Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами .
Свойства
- Смешанное произведение кососимметрично по отношению ко всем своим аргументам:
- т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, что
- Смешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и :
- Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и , взятому со знаком "минус":
- В частности,
- Если любые два вектора коллинеарны, то с любым третьим вектором они образуют смешанное произведение равное нулю.
- Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.
- Геометрический смысл — Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и ; знак зависит от того, является ли эта тройка векторов правой или левой.
- Квадрат смешанного произведения векторов равен определителю Грама, определяемому ими[1]:215.
- Смешанное произведение удобно записывается с помощью символа (тензора) Леви-Чивита:
(в последней формуле в ортонормированном базисе все индексы можно писать нижними; в этом случае эта формула совершенно прямо повторяет формулу с определителем, правда, при этом автоматически получается множитель (-1) для левых базисов).
Обобщение
В -мерном пространстве естественным обобщением смешанного произведения, имеющего смысл ориентированного объема, является определитель матрицы , составленной из строк или столбцов, заполненных координатами векторов. Смысл этой величины — ориентированный -мерный объем (подразумевается стандартный базис и тривиальная метрика).
В произвольном базисе произвольной размерности смешанное произведение удобно записывается с помощью символа (тензора) Леви-Чивиты соответствующей размерности:
В двумерном пространстве таковым служит псевдоскалярное произведение.
См. также
- Двойное векторное произведение
- Векторное произведение
- Скалярное произведение
- Псевдоскалярное произведение
Примечания
- ↑ Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.