Сила Кориолиса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
фикс опечатки
Строка 44: Строка 44:
: <math>\frac{d}{dt} \vec {v}_r = \left[ \vec\omega \times \vec {v}_r \right] + \frac{ \stackrel{~}{d_r} \vec {v}_r } {dt} ,</math>
: <math>\frac{d}{dt} \vec {v}_r = \left[ \vec\omega \times \vec {v}_r \right] + \frac{ \stackrel{~}{d_r} \vec {v}_r } {dt} ,</math>


где <math> \vec {a}_r = \frac{ \stackrel{~}{d_r} \vec {v}_r } {dt} </math> — линейное ускорение тела относительно системы S' в предположении её неподвижности, <math>\vec \varepsilon</math> — угловое ускорение системы S' .
где <math> \vec {a}_r = \frac{ \stackrel{~}{d_r} \vec {v}_r } {dt} </math> — линейное ускорение тела относительно системы S' в предположении её неподвижности, <math>\vec \varepsilon = \frac{d\vec\omega}{dt}</math> — угловое ускорение системы S' .


Таким образом, получаем:
Таким образом, получаем:

Версия от 17:42, 28 февраля 2013

При вращении диска более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Переместить некоторое тело вдоль радиуса так, чтобы оно оставалось на радиусе (синяя стрелка из положения «А» в положение «Б») можно, увеличив скорость тела, то есть придав ему ускорение. Если система отсчёта вращается вместе с диском, то видно, что тело «не хочет» оставаться на радиусе, а «пытается» уйти влево — это и есть сила Кориолиса.
Траектории шарика при движении по поверхности вращающейся тарелки в разных системах отсчета (вверху — в инерциальной, внизу — в неинерциальной).

Си́ла Кориоли́са — одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения.

Названа по имени французского учёного Гюстава Гаспара Кориолиса, описавшего его в 1833 году. Следует, однако, отметить, что первым математическое выражение для силы получил, видимо, Пьер-Симон Лаплас ещё в 1775 году[1]. Сам же эффект отклонения движущихся объектов во вращающихся системах отсчёта был описан Джованни Баттиста Риччоли и Франческо Мария Гримальди ещё в 1651 году[2].

Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции, то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью. Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение, так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.

Для того, чтобы тело двигалось с кориолисовым ускорением, необходимо приложение силы к телу, равной , где  — кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой противоположной направленности. Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с другой силой инерции — центробежной силой, которая направлена по радиусу вращающейся окружности.

Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.

Математическое определение

Сила Кориолиса равна:

,

где  — точечная масса,  — вектор угловой скорости вращающейся системы отсчёта,  — вектор скорости движения точечной массы в этой системе отсчёта, квадратными скобками обозначена операция векторного произведения.

Величина называется кориолисовым ускорением.

Правило Жуковского

Н. Е. Жуковским была предложена удобная для практического использования словесная формулировка определения ускорения Кориолиса

Ускорение Кориолиса можно получить, спроецировав вектор относительной скорости точки на плоскость, перпендикулярную вектору переносной угловой скорости , увеличив полученную проекцию в раз и повернув её на 90 градусов в направлении переносного вращения.

Получение

Пусть тело совершает сложное движение: движется относительно неинерциальной системы отсчёта S' со скоростью S' при этом сама движется поступательно с абсолютной линейной скоростью и одновременно вращается с угловой скоростью в инерциальной системе координат S.

Тогда линейная скорость тела в неподвижной инерциальной системе координат равна:

, причем

где  — радиус-вектор центра масс тела относительно неинерциальной системы отсчета S'. Продифференцируем данное уравнение:

Найдём значение каждого слагаемого в инерциальной системе координат:

где  — линейное ускорение тела относительно системы S' в предположении её неподвижности, — угловое ускорение системы S' .

Таким образом, получаем:

Слагаемое и будет кориолисовым ускорением, образованном от взаимного влияния переносного поворотного и относительного поступательного движений.

Заметим, что если система S также является неинерциальной и движется относительно другой системы, а та другая относительно следующей и т. д., то величины , для системы S' в последнем уравнении следует считать полными — то есть как сумму собственных ускорений (скоростей) всех систем координат (каждой относительно предыдущей), начиная с первой подвижной системы, а  — абсолютным ускорением поступательного движения S' относительно неподвижной инерциальной системы координат.

Заметим также, что в частности, чтобы тело относительно неинерциальной системы отсчета двигалось прямолинейно по радиусу к оси вращения (см. рис.), необходимо приложить к нему силу, которая будет противодействующей суммы Кориолисовой силы , переносной вращательной силы и переносной силы инерции поступательного движения системы отсчета . Составляющая же ускорения не отклонит тело от этой прямой так как является осестремительным переносным ускорением и всегда направлена по этой прямой. Действительно, если рассматривать уравнение такого движения, то после компенсации в нём вышеупомянутых сил получится уравнение , которое если умножить векторно на , то с учетом получим относительно дифур , имеющий при любых и общим решением , которое и является уравнением такой прямой — .

Физический смысл

Пусть тело движется со скоростью вдоль прямой к центру координат инерциальной системы отсчёта (см. рис.).

Тогда данное движение приведёт к изменению расстояния до центра вращения и, как следствие, абсолютной скорости движения точки неинерциальной системы отсчёта, совпадающей с движущейся точкой — её переносной скорости.

Как мы знаем, эта скорость движения равна

Данное изменение будет равно:

Проведя дифференцирование по времени, получим (направление данного ускорения перпендикулярно и ).

С другой стороны, вектор для точки, остающейся неподвижной относительно инерциального пространства, повернётся относительно неинерциального на угол . Или приращение скорости будет

при соответственно второе ускорение будет:

Общее ускорение будет Как видно, система отсчёта не претерпела изменения угловой скорости Линейная скорость относительно неё не меняется и остаётся Тем не менее, ускорение не равно нулю.

Если тело движется перпендикулярно направлению к центру вращения, то доказательство будет аналогичным. Ускорение из-за поворота вектора скорости останется а также прибавляется ускорение в результате изменения центростремительного ускорения точки.

Сила Кориолиса и закон сохранения момента импульса

Если вращающаяся лаборатория, принимаемая за неинерциальную систему отсчёта, имеет конечный момент инерции, то в соответствии с законом сохранения момента импульса при движении тела по радиусу, перпендикулярному оси вращения, угловая скорость вращения будет увеличиваться (при движении тела к центру) или уменьшаться (при движении тела от центра). Рассмотрим эту ситуацию с точки зрения неинерциальной системы.

Хорошим примером может быть человек, который перемещается в радиальном направлении по вращающейся карусели (например, держась за ведущий к центру поручень). При этом с точки зрения человека он при движении к центру будет совершать работу против центробежной силы (эта работа пойдёт на увеличение энергии вращения карусели). На него также будет действовать сила Кориолиса, которая стремится отклонить его движение от радиального направления («сносит» его вбок), и противодействуя сносу (прилагая поперечное усилие к поручню), он будет раскручивать карусель.

При движении от центра центробежная сила будет совершать работу над человеком (за счёт уменьшения энергии вращения), а противодействие силе Кориолиса будет тормозить карусель.

Сила Кориолиса в природе

Сила Кориолиса, вызванная вращением Земли, может быть замечена при наблюдении за движением маятника Фуко[3].

Кроме того, сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в Северном полушарии более крутые — их подмывает вода под действием этой силы[4] (см. Закон Бэра). В Южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за вращение циклонов и антициклонов[5] (см. геострофический ветер): в Северном полушарии вращение воздушных масс происходит в циклонах против часовой стрелки, а в антициклонах — по часовой стрелке; в Южном — наоборот: по часовой стрелке в циклонах и против — в антициклонах. Отклонение ветров (пассатов) при циркуляции атмосферы — также проявление силы Кориолиса.

Если бы рельсы были идеальными, то при движении железнодорожных составов под воздействием силы Кориолиса один рельс изнашивался бы сильнее, чем второй. В северном полушарии больше изнашивается правый, а в южном левый[6].

Силу Кориолиса необходимо учитывать при рассмотрении планетарных движений воды в океане. Она является причиной возникновения гироскопических волн[7].

При идеальных условиях сила Кориолиса определяет направление закручивания воды например, при сливе в раковине. Однако идеальные условия трудно достижимы. Поэтому феномен «обратного закручивания воды при стоке» является скорее околонаучной шуткой.

См. также

Примечания

  1. Manuel López-Mariscal. Further Coriolis correlation considerations (англ.) // Physics Today. — 2012. — Vol. 65. — P. 8. — doi:10.1063/PT.3.1764.
  2. Christopher M. Graney. Coriolis effect, two centuries before Coriolis (англ.) // Physics Today. — 2011. — Vol. 64. — P. 8. — doi:10.1063/PT.3.1195.
  3. Сила Кориолиса
  4. Краткая географическая энциклопедия. Закон Бэра
  5. В. Сурдин. Ванна и закон Бэра // Квант. — 2003. — № 3. — С. 13.
  6. С. Э. Хайкин. Силы инерции и невесомость. Издательство «Наука». Главная редакция физико-математической литературы. М.: 1967.
  7. Научная Сеть. Колебания и волны. Лекции.

Шаблон:Link FA