Парадокс субмарины: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Отклонено последнее 1 изменение (46.50.172.58) и восстановлена версия 53466429 Addbot
Строка 32: Строка 32:


Точно такой же результат получается, если взять правильное уравнение [[гиперболическое движение|гиперболического движения]] <math>z=c/a\sqrt{c^2+a^2t^2}-c^2/a+z_0</math> вместо приближённого, верного лишь вблизи <math>t=0</math> <math>z=a_0t^2/2</math>. Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта субмарины, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера субмарины в направлении движения (см. работу Матсаса для подробного разбора).
Точно такой же результат получается, если взять правильное уравнение [[гиперболическое движение|гиперболического движения]] <math>z=c/a\sqrt{c^2+a^2t^2}-c^2/a+z_0</math> вместо приближённого, верного лишь вблизи <math>t=0</math> <math>z=a_0t^2/2</math>. Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта субмарины, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера субмарины в направлении движения (см. работу Матсаса для подробного разбора).

== Критика ==

Решение не учитывает то, что Земля круглая, то есть не учитывает центробежную силу, которая будет выталкивать лодку вверх от Земли.


== Ссылки ==
== Ссылки ==

Версия от 14:48, 14 июля 2013

Парадо́кс субмари́ны (иногда называемый парадо́ксом Архиме́да или парадо́ксом Са́ппли) — мысленный эксперимент в рамках теории относительности Эйнштейна, приводящий к трудноразрешимому парадоксу.

Согласно специальной теории относительности Эйнштейна с точки зрения неподвижного наблюдателя размеры объекта, движущегося со скоростью, близкой к скорости света, уменьшаются в направлении движения. Однако с точки зрения объекта, напротив, именно неподвижные наблюдатели кажутся короче.

Если предположить, что некая субмарина движется под водой с околосветовой скоростью, неподвижным наблюдателям она покажется сжавшейся. Плотность её, соответственно, должна увеличиться, что непременно потянет её на дно. Но со стороны объекта — находящегося на борту субмарины экипажа — всё воспринималось бы с точностью до наоборот: «бегущая» вода вокруг них сжимается, а значит становится более плотной и выталкивает лодку на поверхность.

Теория относительности говорит, что верно первое предположение — подводная лодка затонет. Учёные объясняют парадокс по-разному. На слои и на лодку действует масса факторов, требующих обязательного учёта для успешного решения этого парадокса. Здесь и увеличение воздействия гравитации на лодку, которая потянет её вниз, и искажение формы слоёв воды вверх (они «задираются» с точки зрения субмарины из-за нарушения одновременности начала ускорения).

В 1989 году Джеймс Саппли разрешил парадокс с использованием специальной теории относительности. В честь него эту задачу называют также «Парадокс Саппли».

В 2003 году бразилец Джордж Матсас из Сан-Паулу рассмотрел этот парадокс, используя общую теорию относительности. У обоих учёных вывод был одинаков: субмарина будет погружаться.

Суть решения

Всё рассмотрение можно вести в рамках специальной теории относительности, переходя в движущуюся с ускорением систему отсчёта (в которой удобно ввести координаты Риндлера). Проще, однако, рассмотреть всё из инерциальной системы отсчёта, где ускорение жидкости вызывается какой-либо причиной, например, жидкость электрически заряжена и находится в электрическом поле, либо её подпирает ускоренно движущаяся стенка. Важно, что эта причина не ускоряет субмарину — например, подводная лодка нейтральна, либо не контактирует со стенкой. Ограничимся начальным моментом времени, когда жидкость покоится, а скорость субмарины равна 0 для «неподвижного» случая, и (с соответствующим ) для «движущегося».

С точки зрения инерциальных наблюдателей ускорение подводной лодки (не важно, в покое или в движении) вызывается передачей импульса от молекул жидкости к молекулам подводной лодки — это микроскопическое определение давления. Эта передача пропорциональна площади поверхности жидкости, контактирующей с субмариной, и соответственно уменьшается в раз при сокращении подводной лодки из-за её движения. Поэтому передача импульса равна для «неподвижной» субмарины, и для «движущейся». Теперь несложно вычислить ускорения, получаемые субмаринами в начальный момент: для «неподвижной» подлодки это будет величина, по условию совпадающая с ускорением жидкости

где  — масса субмарины, а для «движущейся»

где учтено, что подводная лодка ускоряется перпендикулярно направлению своего движения. Как видно, ускорение «движущейся» субмарины меньше, чем покоящейся — она затонет.

Теперь рассмотрим ситуацию в системе отсчёта, где подлодка «неподвижна», но двигается жидкость. Плотность жидкости из-за её релятивистского сокращения возрастёт, что увеличит силу Архимеда в раз, то есть передача импульса станет равна , что вызовет ускорение субмарины

Однако при переходе в эту инерциальную систему отсчёта ускорение жидкости также изменится. Выделив в жидкости некоторый уровень, имеем в исходной системе его уравнение движения , а в новой, согласно преобразованиям Лоренца для месторасположения подводной лодки , получаем то есть ускорение уровня жидкости, измеряемое с субмарины, равно . Оно больше ускорения подлодки — она затонет.

Точно такой же результат получается, если взять правильное уравнение гиперболического движения вместо приближённого, верного лишь вблизи . Есть ещё некоторый эффект, связанный с нарушением одновременности ускорения различных частей жидкости относительно системы отсчёта субмарины, но он может быть сведён к пренебрежимо малой величине выбором малого ускорения и/или размера субмарины в направлении движения (см. работу Матсаса для подробного разбора).

Ссылки

Шаблон:Мысленный эксперимент