Фотоматрица: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Строка 181: | Строка 181: | ||
== См. также == |
== См. также == |
||
* [[Устройство цифрового фотоаппарата]] |
* [[Устройство цифрового фотоаппарата]] |
||
* [[Разрешение (компьютерная графика)]] |
|||
* [[Разрешение матрицы цифровой фотокамеры]] |
* [[Разрешение матрицы цифровой фотокамеры]] |
||
* [[APS-C|Advanced Photo System type-C (APS-C)]] |
* [[APS-C|Advanced Photo System type-C (APS-C)]] |
Версия от 08:06, 16 декабря 2013
Ма́трица или светочувстви́тельная ма́трица — специализированная аналоговая или цифро-аналоговая интегральная микросхема, состоящая из светочувствительных элементов — фотодиодов.
- Предназначена для преобразования проецированного на неё оптического изображения в аналоговый электрический сигнал или в поток цифровых данных (при наличии АЦП непосредственно в составе матрицы).
- Является основным элементом цифровых фотоаппаратов, современных видео- и телевизионных камер, фотокамер, встроенных в мобильный телефон, камер систем видеонаблюдения и многих других устройств.
- Применяется в оптических детекторах перемещения компьютерных мышей, сканерах штрих-кодов, планшетных и проекционных сканерах, системах астро- и солнечной навигации.
Устройство одного пикселя матрицы
Архитектура пикселей у производителей разная. Для примера здесь приводится архитектура ПЗС-пикселя.
Пример субпикселя ПЗС-матрицы с карманом n-типа
Обозначения на схеме субпикселя ПЗС-матрицы — матрицы с карманом n-типа:
1 — фотоны света, прошедшие через объектив фотоаппарата;
2 — микролинза субпикселя;
3 — R — красный светофильтр субпикселя, фрагмент фильтра Байера;
4 — прозрачный электрод из поликристаллического кремния или сплава индия и оксида олова;
5 — оксид кремния;
6 — кремниевый канал n-типа: зона генерации носителей — зона внутреннего фотоэффекта;
7 — зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей заряда;
8 — кремниевая подложка p-типа.
Микролинза субпикселя
Буферные регистры сдвига на ПЗС-матрице, равно как и обрамление КМОП-пиксела на КМОП-матрице «съедают» значительную часть площади матрицы, в результате, каждому пикселю достаётся лишь 30 % светочувствительной области от его общей поверхности. У матрицы с полнокадровым переносом эта область составляет 70 %. Именно поэтому в большинстве современных ПЗС матриц над пикселем устанавливается микролинза. Такое простейшее оптическое устройство покрывает бо́льшую часть площади ПЗС-элемента и собирает всю падающую на эту часть долю фотонов в концентрированный световой поток, который, в свою очередь, направлен на довольно компактную светочувствительную область пиксела.
Характеристики матриц
Светочувствительность (более коротко чувствительность), отношение сигнал-шум и физический размер пикселя однозначно взаимосвязаны (для матриц, созданных по одной и той же технологии). Чем больше физический размер пикселя, тем больше получаемое соотношение сигнал-шум при заданной чувствительности, или тем выше чувствительность при заданном соотношении сигнал-шум. Физический размер матрицы и её разрешение однозначно определяют размер пикселя. Размер пикселя напрямую определяет такую важную характеристику, как фотографическая широта.
Отношение сигнал/шум
Всякая физическая величина совершает некоторые колебания от своего среднего состояния, в науке это называется флуктуациями. Поэтому и каждое свойство всякого тела тоже изменяется, колеблясь в некоторых пределах. Это справедливо и для такого свойства, как светочувствительность фотоприемника, независимо от того, что собой представляет этот фотоприемник. Следствием этого является то, что некоторая величина не может иметь какого-то конкретного значения, а изменяется в зависимости от обстоятельств. Если, например, рассмотреть такой параметр фотоприемника, как «уровень чёрного», то есть то значение сигнала, которое будет показывать фотодатчик при отсутствии света, то и этот параметр будет некоторым образом флуктуировать, в том числе эта величина будет меняться от одного фотодатчика к другому, если они образуют некоторый массив (матрицу).
В качестве примера можно рассмотреть обычную фотопленку, где фотодатчики — зерна бромистого серебра, и их размер и «качество» неконтролируемо меняются от точки к точке (изготовитель фотоматериала может обеспечить только среднее значение параметра и величину его отклонения от среднего значения, но не сами конкретные значения этой величины в конкретных позициях). В силу этого обстоятельства пленка, проявленная без экспозиции, покажет некоторое, очень маленькое, но отличное от нуля почернение, которое называется «вуаль». И у фотоматрицы цифрового фотоаппарата наблюдается то же самое явление. В науке такое явление называется шумом, так как оно мешает правильному восприятию и отображению информации, и для того, чтобы изображение хорошо передавало структуру исходного сигнала, необходимо, чтобы уровень сигнала в некоторой степени превосходил уровень шумов, характерных для данного устройства. Это называется отношением сигнал/шум.[1]
Чувствительность
К матрицам применяется термин эквивалентный «чувствительности», потому что:
- в зависимости от назначения матрицы формальное значение чувствительности может определяться различными способами по различным критериям;
- аналоговым усилением сигнала и цифровой постобработкой можно менять значение чувствительности матрицы в широком диапазоне.
У цифровых фотоаппаратов значение эквивалентной чувствительности может меняться в диапазоне ISO 50—12800. Максимальная используемая в массовых фотоаппаратах чувствительность соответствует отношению сигнал/шум 2-5.
Разрешение
Фотоматрица оцифровывает (разделяет на кусочки — «пиксели») то изображение, которое формируется объективом фотоаппарата. Но, если объектив в силу недостаточно высокой разрешающей способности передаёт ДВЕ светящиеся точки объекта, разделённые третьей чёрной, как одну светящуюся точку на ТРИ подряд расположенных пиксела, то говорить о точном разрешении изображения фотоаппаратом не приходится.
В фотографической оптике существует приблизительное соотношение[2]: если разрешающую способность фотоприемника выразить в линиях на миллиметр (или же в пикселях на дюйм), обозначим её как , и так же выразить разрешающую способность объектива (в его фокальной плоскости), обозначим её как , то результирующее разрешение системы объектив+фотоприемник, обозначим его как , можно найти по формуле:
или .
Это соотношение максимально при , когда разрешение равно , поэтому желательно, чтобы разрешающая способность объектива соответствовала разрешающей способности фотоприемника.[уточнить]
У современных цифровых фотоматриц разрешающая способность определяется размером пикселя, который варьируется у разных фотоматриц в пределах от 0,0025 мм до 0,0080 мм, а у большинства современных фотоматриц он равен 0,006 мм. Поскольку две точки будут различаться если между ними находится третья (незасвеченная) точка, то разрешающая способность соответствует расстоянию в два пикселя, то есть:
, где — размер пикселя.
У цифровых фотоматриц разрешающая способность составляет от 200[источник не указан 5100 дней] линий на миллиметр (у крупноформатных цифровых фотокамер) до 70[источник не указан 5100 дней] линий на миллиметр(у web-камер и мобильных телефонов).
Физический размер матрицы
Физические размеры фотосенсоров определяются размером отдельных пикселей матрицы, которые в современных фотосенсорах имеют величину 0,005-0,006 мм. Чем крупнее пиксель, тем больше его площадь и количество собираемого им света, поэтому тем выше его светочувствительность и лучше отношение сигнал/шум (в плёночной фотографии шумы называются «зернистостью» или «гранулярностью»). Необходимое разрешение деталей фотографии определяет общее количество пикселей, которое в современных фотоматрицах достигает десятков миллионов пикселей (Мегапикселей), и тем задаёт физические размеры фотоматрицы.
- Законы оптики определяют зависимость ГРИП от физического размера матрицы. Если сфотографировать тремя фотоаппаратами с разным физическим размером матрицы одну и ту же сцену с одним и тем же углом зрения и одним и тем же значением диафрагмы на объективах, и изучить результат (файл на компьютере, распечатку с принтера) в одинаковых условиях, то ГРИП на снимке, сделанном фотоаппаратом с наименьшей матрицей, будет наибольшей (больше предметов в кадре будет показано резко), а фотоаппарат с наибольшей матрицей покажет наименьшую ГРИП (предметы не в зоне резкости будут сильнее размыты).
- Размеры фотосенсоров чаще всего обозначают как «тип» в виде дробных частей дюйма (например, 1/1.8" или 2/3"), что фактически больше реального физического размера диагонали сенсора. Эти обозначения происходят от стандартных обозначений размеров трубок телекамер в 1950-х годах. Они выражают не размер диагонали самой матрицы, а внешний размер колбы передающей трубки. Инженеры быстро установили, что по различным причинам диагональ полезной площади изображения составляет около двух третей диаметра трубки. Это определение стало устоявшимся (хотя и должно было быть давно отброшено). Не существует чёткой математической взаимосвязи между «типом» сенсора, выраженном в дюймах, и его фактической диагональю. Однако, в грубом приближении, можно считать, что диагональ составляет две трети типоразмера.
Отношение сторон кадра
- Формат кадра 4:3 в основном применяется в любительских цифровых фотоаппаратах. Некоторые фирмы, например, Canon, допускают в этих фотоаппаратах настройку соотношения сторон в диапазонах 4:3 и 16:9.[3]
- Формат кадра 3:2 применяется в зеркальных цифровых фотоаппаратах, кроме выполненных по стандарту 4:3.
- Выпускается незначительное число моделей с кадром 16:9.
- В цифровых зеркальных фотоаппаратах Olympus используется матрица с соотношением сторон 4:3 (стандарт 4:3).
Пропорции пикселя
Выпускаются матрицы с тремя различными пропорциями пикселя:
- Для видеоаппаратуры выпускаются сенсоры с пропорцией пикселя 4:3 (PAL)
- или 3:4 (NTSC);
- Фотографическое, рентгенографическое и астрономическое оборудование, а также развивающееся сейчас HDTV видеооборудование обычно имеет квадратный пиксель.
Типы матриц по применяемой технологии
- — ПЗС-матрица (CCD, «Charge Coupled Device»);
- — КМОП-матрица (CMOS, «Complementary Metal Oxide Semiconductor»);
- — SIMD WRD (Wide dynamic range) матрица;
- — Live-MOS-матрица;
- — Super CCD-матрица.
Долгое время ПЗС-матрицы были практически единственным массовым видом фотосенсоров. Реализация технологии Active Pixel Sensors около 1993 года и дальнейшее развитие технологий привели в итоге к тому, что к 2008 году КМОП-матрицы стали практически альтернативой ПЗС.[4]
ПЗС-матрица
ПЗС-матрица (CCD, «Charge Coupled Device») состоит из светочувствительных фотодиодов, выполнена на основе кремния, использует технологию ПЗС — приборов с зарядовой связью.
КМОП-матрица
КМОП-матрица (CMOS, «Complementary Metal Oxide Semiconductor») выполнена на основе КМОП-технологии. Каждый пиксел снабжён усилителем считывания, а выборка сигнала с конкретного пиксела происходит, как в микросхемах памяти, произвольно.
SIMD WRD (Wide dynamic range) матрица, также выполненная на основе КМОП-технологии, имеет в обрамлении каждого пиксела ещё и автоматическую систему настройки времени его экспонирования, что позволяет радикально увеличить фотографическую широту устройства.[5]
Live-MOS-матрица
Создана и применяется компанией Panasonic. Выполнена на основе МОП-технологии, однако содержит меньшее число соединений для одного пикселя и питается меньшим напряжением. За счёт этого и за счёт упрощённой передачи регистров и управляющих сигналов имеется возможность получать «живое» изображение при отсутствии традиционного для такого режима работы перегрева и повышения уровня шумов.
Super CCD-матрица
В фотоаппаратах фирмы Fujifilm применяются матрицы, получившие название «Super CCD», в которых присутствуют зелёные пикселы двух различных размеров. Большие — для малых уровней освещённости. И малые, совпадающие по размеру с синими и красными. Это позволяет увеличить фотографическую широту матрицы на величину до 4-х ступеней.[6]
Методы получения цветного изображения
Сам по себе пиксель фотоматрицы является «чёрно-белым». Для того, чтобы матрица давала цветное изображение, применяются специальные технические приёмы.
Трёхматричные системы
Поступающий в камеру свет, попадая на пару дихроидных призм, делится на три основных цвета: красный, зелёный и синий. Каждый из этих пучков направляется на отдельную матрицу (чаще всего используется CCD матрицы, поэтому в наименовании соответствующей аппаратуры употребляется обозначение 3CCD).
Трёхматричные системы применяются в видеокамерах среднего и высокого класса.
Достоинства трёх матриц по сравнению с одноматричными
- лучше передача цветовых переходов, полное отсутствие цветного муара;
- выше разрешение: отсутствует необходимый для устранения муара размывающий (low-pass) фильтр;
- выше светочувствительность и меньший уровень шумов;
- возможность введения цветокоррекции постановкой дополнительных фильтров перед отдельными матрицами, а не перед съёмочным объективом, позволяет добиться существенно лучшей цветопередачи при нестандартных источниках света.
Недостатки трёх матриц по сравнению с одноматричными
- принципиально бо́льшие габаритные размеры;
- трёхматричная система не может использоваться с объективами с малым рабочим отрезком;
- в трёхматричной схеме есть проблема сведе́ния цветов, так как такие системы требуют точной юстировки, причём, чем большего размера матрицы применяются и чем больше их физическое разрешение, тем сложнее добиться необходимого класса точности.
Матрицы с мозаичными фильтрами
Во всех таких матрицах пиксели расположены в одной плоскости, и каждый пиксель накрыт светофильтром некоего цвета. Недостающая цветовая информация восстанавливается путём интерполяции (подробнее…).
Существует несколько способов расположения светофильтров. Эти способы различаются чувствительностью и цветопередачей, при этом чем выше светочувствительность, тем хуже цветопередача:
- RGGB — фильтр Байера, исторически самый ранний;
- RGBW имеют более высокую чувствительность и фотографическую широту (типично выигрыш чувствительности в 1,5—2 раза и 1 ступень по фотографической широте), частный случай RGBW-матрицы — CFAK-матрица компании Kodak;
- RGEB (красный — зелёный — изумрудный — синий);
- CGMY (голубой — зелёный — лиловый — жёлтый).
Матрицы с полноцветными пикселами
Существуют две технологии, позволяющие получать с каждого пикселя все три цветовые координаты. Первая применяется в серийно выпускаемых камерах фирмы Sigma, вторая — на середину 2008 года существует только в виде прототипа.
Многослойные матрицы (Foveon X3)
Фотодетекторы матрицы X3 компании Foveon расположены в три слоя — синий, зелёный, красный. Название сенсора «Х3» означает его «трёхслойность» и «трёхмерность».
Матрицы X3 применяются в цифровых фотоаппаратах Sigma.
Полноцветная RGB-матрица Nikon
В полноцветных матрицах Nikon (патент Nikon от 9 августа 2007[7] (недоступная ссылка с 16-11-2013 [4060 дней])) лучи RGB предметных точек в каждом пикселе, содержащем одну микролинзу и три фотодиода, проходят через открытую микролинзу и падают на первое дихроидное зеркало. При этом синяя составляющая пропускается первым дихроидным зеркалом на детектор синего, а зеленая и красная составляющие отражаются на второе зеркало. Второе дихроидное зеркало отражает зелёную составляющую на детектор зелёного, и пропускает красную и инфракрасную составляющие. Третье дихроидное зеркало отражает красную составляющую на детектор и поглощает инфракрасную составляющую[8].
Несмотря на то, что прототип матрицы уже создан (2008 год), этот патент вряд ли найдёт своё применение в ближайшее время из-за существенных сложностей в технологии.
По сравнению со всеми прочими системами, кроме трёхматричных, данная технология имеет потенциальное преимущество в эффективности использования светового потока по сравнению с технологиями RGBW или фильтром Байера. (Точный выигрыш зависит от характеристик пропускания фильтров).
По сравнению с Foveon X3, данная технология выигрывает в качестве цветопередачи.
По сравнению с 3CCD системами, данный тип матрицы выигрывает в возможности использования в зеркальных аппаратах и в отсутствии необходимости точной юстировки оптической системы.[7] (недоступная ссылка с 16-11-2013 [4060 дней])
См. также
- Устройство цифрового фотоаппарата
- Разрешение (компьютерная графика)
- Разрешение матрицы цифровой фотокамеры
- Advanced Photo System type-C (APS-C)
- 35 мм DOF адаптер
Примечания
- ↑ Сигнал-шум, цифровые аппараты и астрофотография оригинал на английском
- ↑ О разрешающей способности
- ↑ о формате 16:9 в аппаратах canon
- ↑ CCD vs CMOS: facts and fictions (англ.)
- ↑ описание WDR камеры Pelco CCC5000 Pixim
- ↑ Описание камеры Fujifilm S5 Pro (англ.)
- ↑ 1 2 U.S. Patent 7,138,663
- ↑ о матрице Nikon
Это заготовка статьи о фотографии. Помогите Википедии, дополнив её. |