NP-полная задача: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 7: Строка 7:
'''Задачей распознавания''' для языка <math>L</math> называется определение того, принадлежит ли данное слово языку <math>L</math>.
'''Задачей распознавания''' для языка <math>L</math> называется определение того, принадлежит ли данное слово языку <math>L</math>.


Пусть <math>L_1</math> и <math>L_2</math> два языка над алфавитом <math>\Sigma</math>. Язык <math>L_1</math> называется [[Сведение по Карпу|сводимым (по Карпу)]] к языку <math>L_2</math>, если существует [[функция (математика)|функция]], <math>f: \Sigma^* \to \Sigma^*</math>, вычислимая за [[класс P|полиномиальное время]], обладающая следующим свойством:
Пусть <math>L_1</math> и <math>L_2</math> - два языка над алфавитом <math>\Sigma</math>. Язык <math>L_1</math> называется [[Сведение по Карпу|сводимым (по Карпу)]] к языку <math>L_2</math>, если существует [[функция (математика)|функция]], <math>f: \Sigma^* \to \Sigma^*</math>, вычислимая за [[класс P|полиномиальное время]], обладающая следующим свойством:
* <math>x\in L_1 </math> тогда и только тогда, когда <math>f(x)\in L_2</math>. Сводимость по Карпу обозначается как <math>L_1 {\le}_p L_2</math> или <math>L_1 \varpropto L_2</math>.
* <math>x\in L_1 </math> тогда и только тогда, когда <math>f(x)\in L_2</math>. Сводимость по Карпу обозначается как <math>L_1 {\le}_p L_2</math> или <math>L_1 \varpropto L_2</math>.



Версия от 09:51, 24 января 2014

В теории алгоритмов NP-полная задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро».

Формальное определение

Алфавитом называется всякое конечное множество символов (например, {} или {}). Множество всех возможных слов (конечных строк, составленных из символов этого алфавита) над некоторым алфавитом обозначается . Языком над алфавитом называется всякое подмножество множества , то есть .

Задачей распознавания для языка называется определение того, принадлежит ли данное слово языку .

Пусть и - два языка над алфавитом . Язык называется сводимым (по Карпу) к языку , если существует функция, , вычислимая за полиномиальное время, обладающая следующим свойством:

  • тогда и только тогда, когда . Сводимость по Карпу обозначается как или .

Язык называется NP-трудным, если любой язык из класса NP сводится к нему. Язык называют NP-полным, если он NP-труден, и при этом сам лежит в классе NP.

Таким образом, если будет найден алгоритм, решающий некоторую (любую) NP-полную задачу за полиномиальное время, то все NP-задачи окажутся в классе P, то есть будут решаться за полиномиальное время.

NP-полнота в сильном смысле

Задача называется NP-полной в сильном смысле, если у неё существует подзадача, которая:

  1. не является задачей с числовыми параметрами (т.е. максимальное значение величин, встречающихся в этой задаче, ограничено сверху полиномом от длины входа),
  2. принадлежит классу NP,
  3. является NP-полной.

Класс таких задач называется NPCS. Если гипотеза P ≠ NP верна, то для NPCS задачи не существует псевдополиномиального алгоритма.

Гипотеза P ≠ NP

Вопрос о совпадении классов P и NP уже более 30 лет является открытой проблемой. Научное сообщество склоняется к отрицательному ответу на этот вопрос[1] — в этом случае решать NP-полные задачи за полиномиальное время не удастся.

Примеры NP-полных задач

См. также

Примечания

  1. William I. Gasarch (2002). "The P=?NP poll" (PDF). SIGACT News. 33 (2): 34—47. doi:10.1145/1052796.1052804.
  2. Erik D. Demaine, Susan Hohenberger, David Liben-Nowell. Tetris is Hard, Even to Approximate (англ.). preprint.

Литература

  • Томас Х. Кормен и др. Глава 34. NP-полнота // Алгоритмы: построение и анализ = INTRODUCTION TO ALGORITHMS. — 2-е изд. — М.: «Вильямс», 2006. — С. 1296. — ISBN 0-07-013151-1.

Ссылки