Магический квадрат: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Halyavin (обсуждение | вклад) Нет описания правки |
Halyavin (обсуждение | вклад) |
||
Строка 128: | Строка 128: | ||
|} |
|} |
||
Это первый магический квадрат, относящийся к разновидности так называемых [[#Дьявольский магический квадрат|« |
Это первый магический квадрат, относящийся к разновидности так называемых [[#Дьявольский магический квадрат|«дьявольских» квадратов]].<ref>[http://laplas.narod.ru/alfavit_1.files/pril_3.htm 404<!-- Заголовок добавлен ботом -->] {{недоступная ссылка|число=13|месяц=05|год=2013|url=http://laplas.narod.ru/alfavit_1.files/pril_3.htm}}</ref><ref>[http://telesmi.narod.ru/new_synthesis/page09.htm Telesmi<!-- Заголовок добавлен ботом -->]</ref><ref>Mathline: [http://www.pbs.org/teachers/mathline/concepts/historyandmathematics/activity2.shtm Magic Squares and Stars]{{ref-en}}</ref> |
||
=== Магический квадрат Ян Хуэя (Китай) === |
=== Магический квадрат Ян Хуэя (Китай) === |
Версия от 08:44, 23 февраля 2014
Маги́ческий, или волше́бный квадра́т — это квадратная таблица , заполненная числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то он называется полумагическим. Нормальным называется магический квадрат, заполненный натуральными числами от до . Магический квадрат называется ассоциативным или симметричным, если сумма любых двух чисел, расположенных симметрично относительно центра квадрата, равна .
Нормальные магические квадраты существуют для всех порядков , за исключением , хотя случай тривиален — квадрат состоит из одного числа. Минимальный нетривиальный случай показан ниже, он имеет порядок 3.
2 | 7 | 6 | 15 | |||
9 | 5 | 1 | 15 | |||
4 | 3 | 8 | 15 | |||
15 | 15 | 15 | 15 | 15 |
Сумма чисел в каждой строке, столбце и на диагоналях называется магической константой, M. Магическая константа нормального волшебного квадрата зависит только от n и определяется формулой
Первые значения магических констант приведены в следующей таблице (последовательность A006003 в OEIS):
Порядок n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
M (n) | 15 | 34 | 65 | 111 | 175 | 260 | 369 | 505 | 671 | 870 | 1105 |
Исторически значимые магические квадраты
Квадрат Ло Шу
Ло Шу (кит. трад. 洛書, упр. 洛书, пиньинь luò shū) Единственный нормальный магический квадрат 3×3. Был известен ещё в Древнем Китае, первое изображение на черепаховом панцире датируется 2200г. до н.э..
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
Квадрат, найденный в Кхаджурахо (Индия)
Самый ранний уникальный магический квадрат обнаружен в надписи XI века в индийском городе Кхаджурахо:
7 | 12 | 1 | 14 |
2 | 13 | 8 | 11 |
16 | 3 | 10 | 5 |
9 | 6 | 15 | 4 |
Это первый магический квадрат, относящийся к разновидности так называемых «дьявольских» квадратов.[1][2][3]
Магический квадрат Ян Хуэя (Китай)
В 13 в. математик Ян Хуэй занялся проблемой методов построения магических квадратов. Его исследования были потом продолжены другими китайскими математиками. Ян Хуэй рассматривал магические квадраты не только третьего, но и больших порядков. Некоторые из его квадратов были достаточно сложны, однако он всегда давал правила для их построения. Он сумел построить магический квадрат шестого порядка, причем последний оказался почти ассоциативным (в нем только две пары центрально противолежащих чисел не дают сумму 37)[4]:
27 | 29 | 2 | 4 | 13 | 36 |
9 | 11 | 20 | 22 | 31 | 18 |
32 | 25 | 7 | 3 | 21 | 23 |
14 | 16 | 34 | 30 | 12 | 5 |
28 | 6 | 15 | 17 | 26 | 19 |
1 | 24 | 33 | 35 | 8 | 10 |
Квадрат Альбрехта Дюрера
Магический квадрат 4×4, изображённый на гравюре Альбрехта Дюрера «Меланхолия I», считается самым ранним в европейском искусстве.[5] Два средних числа в нижнем ряду указывают дату создания гравюры (1514).
16 | 3 | 2 | 13 |
5 | 10 | 11 | 8 |
9 | 6 | 7 | 12 |
4 | 15 | 14 | 1 |
Сумма чисел на любой горизонтали, вертикали и диагонали равна 34. Эта сумма также встречается во всех угловых квадратах 2×2, в центральном квадрате (10+11+6+7), в квадрате из угловых клеток (16+13+4+1), в квадратах, построенных «ходом коня» (2+8+9+15 и 3+5+12+14), в прямоугольниках, образованных парами средних клеток на противоположных сторонах (3+2+15+14 и 5+8+9+12). Большинство дополнительных симметрий связано с тем, что сумма любых двух центрально симметрично расположенных чисел равна 17.
Квадраты Генри Э. Дьюдени и Аллана У. Джонсона-мл.
Если в квадратную матрицу n × n заносится не строго натуральный ряд чисел, то данный магический квадрат — нетрадиционный. Ниже представлены два таких магических квадрата, заполненные простыми числами (хотя 1 в современной теории чисел не считается простым числом). Первый имеет порядок n=3 (квадрат Дьюдени); второй (размером 4x4) — квадрат Джонсона. Оба они были разработаны в начале двадцатого столетия[6]:
|
|
Есть еще несколько подобных примеров:
17 | 89 | 71 |
113 | 59 | 5 |
47 | 29 | 101 |
1 | 823 | 821 | 809 | 811 | 797 | 19 | 29 | 313 | 31 | 23 | 37 |
89 | 83 | 211 | 79 | 641 | 631 | 619 | 709 | 617 | 53 | 43 | 739 |
97 | 227 | 103 | 107 | 193 | 557 | 719 | 727 | 607 | 139 | 757 | 281 |
223 | 653 | 499 | 197 | 109 | 113 | 563 | 479 | 173 | 761 | 587 | 157 |
367 | 379 | 521 | 383 | 241 | 467 | 257 | 263 | 269 | 167 | 601 | 599 |
349 | 359 | 353 | 647 | 389 | 331 | 317 | 311 | 409 | 307 | 293 | 449 |
503 | 523 | 233 | 337 | 547 | 397 | 421 | 17 | 401 | 271 | 431 | 433 |
229 | 491 | 373 | 487 | 461 | 251 | 443 | 463 | 137 | 439 | 457 | 283 |
509 | 199 | 73 | 541 | 347 | 191 | 181 | 569 | 577 | 571 | 163 | 593 |
661 | 101 | 643 | 239 | 691 | 701 | 127 | 131 | 179 | 613 | 277 | 151 |
659 | 673 | 677 | 683 | 71 | 67 | 61 | 47 | 59 | 743 | 733 | 41 |
827 | 3 | 7 | 5 | 13 | 11 | 787 | 769 | 773 | 419 | 149 | 751 |
Последний квадрат, построенный в 1913 г. Дж. Н.Манси, примечателен тем, что он составлен из 143 последовательных простых чисел за исключением двух моментов: привлечена единица, которая не является простым числом, и не использовано единственное чётное простое число 2.
Квадраты с дополнительными свойствами
Дьявольский магический квадрат
Дьявольский квадрат или пандиагональный квадрат — магический квадрат, в котором также с магической константой совпадают суммы чисел по ломаным диагоналям (диагонали, которые образуются при сворачивании квадрата в тор) в обоих направлениях.
Существует 48 дьявольских квадратов 4×4 с точностью до поворотов и отражений. Если принять во внимание ещё и симметрию относительно торических параллельных переносов, то остаётся только 3 существенно различных квадрата:
|
|
|
Пандиагональные квадраты существуют для нечётного порядка n>3, для любого порядка двойной чётности n=4k (k=1,2,3…) и не существуют для порядка одинарной чётности ().
Пандиагональные квадраты четвёртого порядка обладают рядом дополнительных свойств, за которые их называют совершенными. Совершенных квадратов нечётного порядка не существует. Среди пандиагональных квадратов двойной чётности выше 4 имеются совершенные.[7]
Пандиагональных квадратов пятого порядка 3600. С учётом торических параллельных переносов имеется 144 различных пандиагональных квадратов. Один из них показан ниже.
1 | 15 | 24 | 8 | 17 |
9 | 18 | 2 | 11 | 25 |
12 | 21 | 10 | 19 | 3 |
20 | 4 | 13 | 22 | 6 |
23 | 7 | 16 | 5 | 14 |
Если пандиагональный квадрат еще и ассоциативный, то он носит название идеальный[8]. Пример идеального магического квадрата:
21 | 32 | 70 | 26 | 28 | 69 | 22 | 36 | 65 |
40 | 81 | 2 | 39 | 77 | 7 | 44 | 73 | 6 |
62 | 10 | 51 | 58 | 18 | 47 | 57 | 14 | 52 |
66 | 23 | 34 | 71 | 19 | 33 | 67 | 27 | 29 |
4 | 45 | 74 | 3 | 41 | 79 | 8 | 37 | 78 |
53 | 55 | 15 | 49 | 63 | 11 | 48 | 59 | 16 |
30 | 68 | 25 | 35 | 64 | 24 | 31 | 72 | 20 |
76 | 9 | 38 | 75 | 5 | 43 | 80 | 1 | 42 |
17 | 46 | 60 | 13 | 54 | 56 | 12 | 50 | 61 |
Известно, что не существует идеальных магических квадратов порядка n = 4k+2 и квадрата порядка n = 4. В то же время, существуют идеальные квадраты порядка n = 8.[9] Методом построения составных квадратов можно построить на базе данного квадрата восьмого порядка идеальные квадраты порядка n = 8k, k=5,7,9…и порядка n = 8^p, p=2,3,4…[10] В 2008 г. разработан комбинаторный метод построения идеальных квадратов порядка n = 4k, k = 2, 3, 4,…
Построение магических квадратов
Метод террас
Описан Ю. В. Чебраковым в «Теории магических матриц».
Для заданного нечетного n начертим квадратную таблицу размером nxn. Пристроим к этой таблице со всех четырех сторон террасы (пирамидки). В результате получим ступенчатую симметричную фигуру.
|
Начиная с левой вершины ступенчатой фигуры, заполним ее диагональные ряды последовательными натуральными числами от 1 до .
После этого для получения классической матрицы N-го порядка числа, находящиеся в террасах, поставим на те места таблицы размером NxN, в которых они оказались бы, если перемещать их вместе с террасами до того момента, пока основания террас не примкнут к противоположной стороне таблицы.
|
|
Прочие способы
Правила построения магических квадратов делятся на три категории в зависимости от того, каков порядок квадрата: нечетен, равен удвоенному нечетному числу или равен учетверенному нечетному числу. Общий метод построения всех квадратов неизвестен, хотя широко применяются различные схемы.[11][12] Найти все магические квадраты порядка удается только для , поэтому представляют большой интерес частные процедуры построения магических квадратов при . Проще всего конструкция для магического квадрата нечетного порядка. Нужно в клетку с координатами поставить число
Ещё проще построение выполнить следующим образом. Берётся матрица n x n . Внутри её строится ступенчатый ромб. В нём ячейки слева вверх по диагоналям заполняются последовательным рядом нечётных чисел. Определяется значение центральной ячейки C. Тогда в углах магического квадрата значения будут такими: верхняя правая ячейка C-1 ; нижня левая ячейка C+1 ; нижняя правая ячейка C-n; верхняя левая ячейка C+n. Заполнение пустых ячеек в ступенчатых угловых треугольниках ведётся с соблюдением простых правил: 1)по строкам числа слева направо увеличиваются с шагом n + 1; 2) по столбцам сверху вниз числа увеличиваются с шагом n-1.
Также разработаны алгоритмы построения пандиагональных квадратов,[13][14] и идеальных магических квадратов 9x9.[15] [16] Эти результаты позволяют строить идеальные магические квадраты порядков для .[8][17] Существуют также общие методы компоновки идеальных магических квадратов нечётного порядка .[18] [19] Разработаны методы построения идеальных магических квадратов порядка n=8k, k=1,2,3…[20] и совершенных магических квадратов.[21] Пандиагональные и идеальные квадраты четно-нечётного порядка удаётся скомпоновать лишь в том случае, если они нетрадиционные.[22][23] [24] Тем не менее, можно находить почти пандиагональные квадраты [25] Найдена особая группа идеально-совершенных магических квадратов (традиционных и нетрадиционных)[26].
Примеры более сложных квадратов
Методически строго отработаны магические квадраты нечётного порядка и порядка двойной чётности.[27] Формализация квадратов порядка одинарной чётности намного труднее, что иллюстрируют следующие схемы:
|
|
|
Существуют несколько десятков других методов построения магических квадратов
Шахматный подход
Известно, что шахматы, как и магические квадраты, появились десятки веков назад в Индии. Поэтому неслучайно возникла идея шахматного подхода к построению магических квадратов. Впервые эту мысль высказал Эйлер. Он попытался получить полный магический квадрат непрерывным обходом коня. Однако, это сделать ему не удалось, поскольку в главных диагоналях суммы чисел отличались от магической константы. Тем не менее шахматная разбивка позволяет создавать любой магический квадрат. Цифры заполняются регулярно и построчно с учётом цвета ячеек.
См. также
- Латинский квадрат
- Палиндром
- Lo Shu Square
- Супермагический квадрат
- Магический куб
- Супермагический куб
- Судоку
- Рамочные магические квадраты
Примечания
- ↑ 404 (недоступная ссылка с 13-05-2013 [4239 дней] — история)
- ↑ Telesmi
- ↑ Mathline: Magic Squares and Stars (англ.)
- ↑ В. Е. Еремеев «Традиционная наука Китая», Глава 5: Математика.
- ↑ Н.Макарова «Магический квадрат Дюрера»
- ↑ А. К. Дьюдени «Просеивание числового песка в поисках простых чисел»
- ↑ Н.Макарова «Совершенные магические квадраты»
- ↑ 1 2 Г.Александров «Идеальные магические квадраты порядка , где »
- ↑ H.Danielsson «Ultramagisches Quadrat 8. Ordnung» (нем.)
- ↑ Н.Макарова «Идеальные квадраты чётно-чётного порядка»
- ↑ Энциклопедия «Кругосвет»: «Магический квадрат (недоступная ссылка с 13-05-2013 [4239 дней] — история)».
- ↑ Н. Макарова «Методы построения магических квадратов (обзорная статья)»
- ↑ Г.Александров «Метод построения идеального магического квадрата нечётного порядка»
- ↑ Г.Александров
- ↑ Г.Александров
- ↑ Н.Макарова «Магические квадраты девятого порядка»
- ↑ Н.Макарова «Пандиагональные квадраты нечётных порядков кратных девяти»
- ↑ Г.Александров
- ↑ Н. Макарова
- ↑ Н.Макарова «Метод построения идеальных квадратов порядка n = 8k»
- ↑ Н. Макарова
- ↑ Е.Слкуни «Нетрадиционные пандиагональные магические квадраты 6-го порядка»
- ↑ Н.Макарова
- ↑ Г.Александров «Идеальный нетрадиционный магический квадрат порядка n=4k+2
- ↑ Г.Александров »Почти пандиагональные магические квадраты порядка 4k+2"
- ↑ Г.Александров «Идеальный совершенный магический квадрат четного порядка
- ↑ http://bspu.ab.ru/~festival/kon2001/teacher/konspect/inform/stepanowa_nowichihina.rtf
Литература
- Я. В. Успенский. Избранные математические развлечения. — Сеятель, 1924.
- Б. А. Кордемский. Математическая смекалка. — М.: ГИФМЛ, 1958. — 576 с.
- М. М. Постников. Магические квадраты. — М.: Наука, 1964.
- Н. М. Рудин. От магического квадрата к шахматам. — М.: Физкультура и спорт, 1969.
- Е. Я. Гуревич. Тайна древнего талисмана. — М.: Наука, 1969.
- М. Гарднер. Математические досуги. — М.: Мир, 1972.
- Энциклопедический словарь юного математика. — М.: Педагогика, 1989.
- Ю. В. Чебраков. Магические квадраты. Теория чисел, алгебра, комбинаторный анализ. — СПб.: СПб гос. техн. ун-т, 1995.
- Ю. В. Чебраков. Теория магических матриц. — СПб., 2008.
- М. Гарднер. Глава 17. Магические квадраты и кубы // Путешествие во времени. — М.: Мир, 1990.
- Чирказов Д. Буквенные магические квадраты как симметричные текстовые массивы. // Современные научные исследования и инновации. – № 11 Ноябрь 2012
Ссылки
- Магические квадраты (англ.)
- последовательность A164843 в OEIS
- М. Гарднер »Рецензия на книгу Кэтлин Оллереншоу и Дэвида Бри"
- H. Heinz Magic Squares, Magic Stars & Other Patterns (англ.)
- Н. Скрябина, В.Дубовской Магические квадраты
- Шахматный подход
- Нетрадиционные магические квадраты из простых чисел
- Наименьшие магические квадраты из простых чисел
- «Общие формулы магических квадратов.»
- Совершенный МК 6х6
- Идеальные магические квадраты