Молния: различия между версиями
[непроверенная версия] | [непроверенная версия] |
Нет описания правки |
Нет описания правки |
||
Строка 1: | Строка 1: | ||
{{Значения|Молния (значения)}} |
{{Значения|Молния (значения)}} |
||
[[Файл:Lightning3.jpg|thumb|Молнии]] |
[[Файл:Lightning3.jpg|thumb|Молнии]] |
||
Молния-бьет из земли,ибо так сказал в свое время ученый по имени Стивен Фрай,по его мнению заряды частиц находят наивысшую точку и извергают электричество с нее |
|||
== История == |
== История == |
Версия от 08:37, 1 мая 2014
Молния-бьет из земли,ибо так сказал в свое время ученый по имени Стивен Фрай,по его мнению заряды частиц находят наивысшую точку и извергают электричество с нее
История
Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Широко известен опыт Франклина по выяснению электрической природы молнии. В 1750 году им опубликована работа, в которой описан эксперимент с использованием воздушного змея, запущенного в грозу. Опыт Франклина был описан в работе Джозефа Пристли.
Физические свойства молнии
Средняя длина молнии 2,5 км, некоторые разряды простираются в атмосфере на расстояние до 20 км.
Формирование молнии
Наиболее часто молния возникает в кучево-дождевых облаках, тогда они называются грозовыми; иногда молния образуется в слоисто-дождевых облаках, а также при вулканических извержениях, торнадо и пылевых бурях.
Обычно наблюдаются линейные молнии, которые относятся к так называемым безэлектродным разрядам, так как они начинаются (и заканчиваются) в скоплениях заряженных частиц. Это определяет их некоторые до сих пор не объяснённые свойства, отличающие молнии от разрядов между электродами. Так, молнии не бывают короче нескольких сотен метров; они возникают в электрических полях значительно более слабых, чем поля при межэлектродных разрядах; сбор зарядов, переносимых молнией, происходит за тысячные доли секунды с миллиардов мелких, хорошо изолированных друг от друга частиц, расположенных в объёме нескольких км³. Наиболее изучен процесс развития молнии в грозовых облаках, при этом молнии могут проходить в самих облаках — внутриоблачные молнии, а могут ударять в землю — наземные молнии. Для возникновения молнии необходимо, чтобы в относительно малом (но не меньше некоторого критического) объёме облака образовалось электрическое поле (см. атмосферное электричество) с напряжённостью, достаточной для начала электрического разряда (~ 1 МВ/м), а в значительной части облака существовало бы поле со средней напряжённостью, достаточной для поддержания начавшегося разряда (~ 0,1—0,2 МВ/м). В молнии электрическая энергия облака превращается в тепловую, световую и звуковую.
Наземные молнии
Процесс развития наземной молнии состоит из нескольких стадий. На первой стадии, в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными зарядами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с молекулами, составляющими воздух, ионизуют их.
По более современным представлениям, ионизация атмосферы для прохождения разряда происходит под влиянием высокоэнергетического космического излучения — частиц с энергиями 1012-1015 эВ, формирующих широкий атмосферный ливень (ШАЛ) с понижением пробивного напряжения воздуха на порядок от такового при нормальных условиях.[1]
По одной из гипотез, частицы запускают процесс, получивший название пробоя на убегающих электронах («спусковым крючком» процесса при этом являются космические лучи)[2]. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов — стримеры, представляющие собой хорошо проводящие каналы, которые, сливаясь, дают начало яркому термоионизованному каналу с высокой проводимостью — ступенчатому лидеру молнии.
Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью ~ 50 000 километров в секунду, после чего его движение приостанавливается на несколько десятков микросекунд, а свечение сильно ослабевает; затем в последующей стадии лидер снова продвигается на несколько десятков метров. Яркое свечение охватывает при этом все пройденные ступени; затем следуют снова остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 200 000 метров в секунду.
По мере продвижения лидера к земле напряжённость поля на его конце усиливается и под его действием из выступающих на поверхности Земли предметов выбрасывается ответный стример, соединяющийся с лидером. Эта особенность молнии используется для создания молниеотвода.
В заключительной стадии по ионизованному лидером каналу следует обратный (снизу вверх), или главный, разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, яркостью, заметно превышающей яркость лидера, и большой скоростью продвижения, вначале доходящей до ~ 100 000 километров в секунду, а в конце уменьшающейся до ~ 10 000 километров в секунду. Температура канала при главном разряде может превышать 20000-30000 °C. Длина канала молнии может быть от 1 до 10 км, диаметр — несколько сантиметров. После прохождения импульса тока ионизация канала и его свечение ослабевают. В финальной стадии ток молнии может длиться сотые и даже десятые доли секунды, достигая сотен и тысяч ампер. Такие молнии называют затяжными, они наиболее часто вызывают пожары. Но земля не является заряженой, поэтому принято считать что разряд молнии происходит от облака по направлению к земле(сверху вниз).
Главный разряд разряжает нередко только часть облака. Заряды, расположенные на больших высотах, могут дать начало новому (стреловидному) лидеру, движущемуся непрерывно со скоростью в тысячи километров в секунду. Яркость его свечения близка к яркости ступенчатого лидера. Когда стреловидный лидер доходит до поверхности земли, следует второй главный удар, подобный первому. Обычно молния включает несколько повторных разрядов, но их число может доходить и до нескольких десятков. Длительность многократной молнии может превышать 1 сек. Смещение канала многократной молнии ветром создаёт так называемую ленточную молнию — светящуюся полосу.
Внутриоблачные молнии
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 в экваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.
Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Молнии в верхней атмосфере
В 1989 году был обнаружен особый вид молний — эльфы, молнии в верхней атмосфере[3]. В 1995 году был открыт другой вид молний в верхней атмосфере — джеты[3].
Эльфы
Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака[3]. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс)[3][4].
Джеты
Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов[5][6].
Спрайты
Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний — не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало[7].
Взаимодействие молнии с поверхностью земли и расположенными на ней объектами
Согласно ранним оценкам, частота ударов молний на Земле составляет 100 раз в секунду. По современным данным, полученным с помощью спутников, которые могут обнаруживать молнии в местах, где не ведётся наземное наблюдение, эта частота составляет в среднем 44 ± 5 раз в секунду, что соответствует примерно 1,4 миллиарда молний в год.[8][9] 75 % этих молний ударяет между облаками или внутри облаков, а 25 % — в землю.[10]
Самые мощные молнии вызывают рождение фульгуритов.[11]
Ударная волна от молнии
Разряд молнии является электрическим взрывом и в некоторых аспектах похож на детонацию взрывчатого вещества. Он вызывает появление ударной волны, опасной в непосредственной близости. Ударная волна от достаточно мощного грозового разряда на расстояниях до нескольких метров может наносить разрушения, ломать деревья, травмировать и контузить людей даже без непосредственного поражения электрическим током. Например, при скорости нарастания тока 30 тысяч ампер за 0,1 миллисекунду и диаметре канала 10 см могут наблюдаться следующие давления ударной волны[12]:
- на расстоянии от центра 5 см (граница светящегося канала молнии) — 0,93 МПа,
- на расстоянии 0,5 м — 0,025 МПа (разрушение непрочных строительных конструкций и травмы человека),
- на расстоянии 5 м — 0,002 МПа (выбивание стёкол и временное оглушение человека).
На бо́льших расстояниях ударная волна вырождается в звуковую волну — гром.
Люди и молния
Молнии — серьёзная угроза для жизни людей. Поражение человека или животного молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако-земля». Часто молния попадает в деревья и трансформаторные установки на железной дороге, вызывая их возгорание. Поражение обычной линейной молнией внутри здания невозможно, однако бытует мнение, что так называемая шаровая молния может проникать через щели и открытые окна. Обычный грозовой разряд опасен для телевизионных и радиоантенн, расположенных на крышах высотных зданий, а также для сетевого оборудования.
В организме пострадавших отмечаются такие же патологические изменения, как при поражении электротоком. Жертва теряет сознание, падает, могут отмечаться судороги, часто останавливается дыхание и сердцебиение. На теле обычно можно обнаружить «метки тока», места входа и выхода электричества. В случае смертельного исхода причиной прекращения основных жизненных функций является внезапная остановка дыхания и сердцебиения, от прямого действия молнии на дыхательный и сосудодвигательный центры продолговатого мозга. На коже часто остаются так называемые знаки молнии, древовидные светло-розовые или красные полосы, исчезающие при надавливании пальцами (сохраняются в течение 1 — 2 суток после смерти). Они — результат расширения капилляров в зоне контакта молнии с телом.
Пострадавший от удара молнией нуждается в госпитализации, так как подвержен риску расстройств электрической активности сердца. До приезда квалифицированного медика ему может быть оказана первая помощь. В случае остановки дыхания показано проведение реанимации, в более легких случаях - помощь зависит от состояния и симптомов.
Жертвы молний
- В мифологии и литературе:
- Асклепий, Эскулап — сын Аполлона — бог врачей и врачебного искусства, не только исцелял, но и оживлял мёртвых. Чтобы восстановить нарушенный мировой порядок Зевс поразил его своей молнией[13].
- Фаэтон — сын бога Солнца Гелиоса — однажды взялся управлять солнечной колесницей своего отца, но не сдержал огнедышащих коней и едва не погубил в страшном пламени Землю. Разгневанный Зевс пронзил Фаэтона молниями. Общий список см. Молния Зевса.
- Исторические личности:
- Казанский губернатор Сергей Голицын — 1 (12) июля 1738 года погиб во время охоты от удара молнии.
- Российский академик Г. В. Рихман — в 1753 году погиб от удара молнии во время проведения научного эксперимента.
- Народный депутат Украины, экс-губернатор Ровненской области В. Червоний 4 июля 2009 года погиб от удара молнии.
Интересные факты
- Рой Салливан остался живым после семи ударов молнией.
- Американский майор Саммерфорд умер после продолжительной болезни (результат удара третьей молнией). Четвёртая молния полностью разрушила его памятник на кладбище.
- У индейцев Анд удар молнией считается необходимым для достижения высших уровней шаманской инициации[14].
Деревья и молния
Высокие деревья — частая мишень для молний. На реликтовых деревьях-долгожителях легко можно найти множественные шрамы от молний — громобоины. Считается, что одиночно стоящее дерево чаще поражается молнией, хотя в некоторых лесных районах громобоины можно увидеть почти на каждом дереве. Сухие деревья от удара молнии загораются. Чаще удары молнии бывают направлены в дуб, реже всего — в бук, что, по-видимому, зависит от различного количества жирных масел в них, представляющих большое сопротивление электричеству.[15]
Молния проходит в стволе дерева по пути наименьшего электрического сопротивления, с выделением большого количества тепла, превращая воду в пар, который раскалывает ствол дерева или чаще отрывает от него участки коры, показывая путь молнии. В следующие сезоны деревья обычно восстанавливают повреждённые ткани и могут закрывать рану целиком, оставив только вертикальный шрам. Если ущерб является слишком серьёзным, ветер и вредители в конечном итоге убивают дерево. Деревья являются естественными громоотводами, и, как известно, обеспечивают защиту от удара молнии для близлежащих зданий. Посаженные возле здания, высокие деревья улавливают молнии, а высокая биомасса корневой системы помогает заземлять разряд молнии.
По этой причине нельзя прятаться от дождя под деревьями во время грозы, особенно под высокими или одиночными на открытой местности.[16][17]
Из деревьев, поражённых молнией, делают музыкальные инструменты, приписывая им уникальные свойства.[18][19]
Молния и электроустановки
Разряды молний представляют большую опасность для электрического и электронного оборудования. При прямом попадании молнии в провода в линии возникает перенапряжение, вызывающее разрушение изоляции электрооборудования, а большие токи обуславливают термические повреждения проводников. В связи с этим пожары на сложном технологическом оборудовании могут возникать не мгновенно, а в период до восьми часов после попадания молнии. Для защиты от грозовых перенапряжений электрические подстанции и распределительные сети оборудуются различными видами защитного оборудования такими как разрядники, нелинейные ограничители перенапряжения, длинноискровые разрядники. Для защиты от прямого попадания молнии используются молниеотводы и грозозащитные тросы. Для электронных устройств представляет опасность также и электромагнитный импульс, создаваемый молнией.
Молния и авиация
Атмосферное электричество вообще и молнии в частности представляют значительную угрозу для авиации. Попадание молнии в летательный аппарат вызывает растекание тока большой величины по его конструкционным элементам, что может вызвать их разрушение, пожар в топливных баках, отказы оборудования, гибель людей. Для снижения риска металлические элементы наружной обшивки летательных аппаратов тщательно электрически соединяются друг с другом, а неметаллические элементы металлизируются. Таким образом, обеспечивается низкое электрическое сопротивление корпуса. Для стекания тока молнии и другого атмосферного электричества с корпуса летательные аппараты оборудуются разрядниками.
Ввиду того, что электрическая емкость самолёта, находящегося в воздухе невелика, разряд «облако-самолёт» обладает существенно меньшей энергией по сравнению с разрядом «облако-земля». Наиболее опасна молния для низколетящего самолёта или вертолёта, так как в этом случае летательный аппарат может сыграть роль проводника тока молнии из облака в землю. Известно, что самолёты на больших высотах сравнительно часто поражаются молнией и тем не менее, случаи катастроф по этой причине единичны. В то же время известно очень много случаев поражения самолётов молнией на взлете и посадке, а также на стоянке, которые закончились катастрофами или уничтожением летательного аппарата.
Молния и корабли
Молния также представляет очень большую угрозу для надводных кораблей в виду того, что последние приподняты над поверхностью моря и имеют много острых элементов (мачты, антенны), являющихся концентраторами напряженности электрического поля. Во времена деревянных парусников, обладающих высоким удельным сопротивлением корпуса, удар молнии практически всегда заканчивался для корабля трагически: корабль сгорал или разрушался, от поражения электрическим током гибли люди. Клёпаные стальные суда также были уязвимы для молнии. Высокое удельное сопротивление заклёпочных швов вызывало значительное локальное тепловыделение, что приводило к возникновению электрической дуги, пожарам, разрушению заклёпок и появлению водотечности корпуса.
Сварной корпус современных судов обладает низким удельным сопротивлением и обеспечивает безопасное растекание тока молнии. Выступающие элементы надстройки современных судов надежно электрически соединяются с корпусом и также обеспечивают безопасное растекание тока молнии.
Деятельность человека, вызывающая молнию
При мощных наземных ядерных взрывах недалеко от эпицентра под действием электромагнитного импульса могут появиться молнии. Только в отличие от грозовых разрядов эти молнии начинаются от земли и уходят вверх[20].
-
Растущая огненная полусфера наземного взрыва Иви Майк мощностью 10,4 Мт и молнии вокруг неё
-
Молния, вызванная запуском ракеты, горящее топливо которой оставляет позади летящей ракеты ровный след из хлорида кальция и радиоактивных солей цезия, которые, вступая в контакт с влагой воздуха, образуют токопроводящий канал, имеющий гораздо меньшее электрическое сопротивление, чем сопротивление просто влажного воздуха [21] [22]
Студенты университета Флориды провели эксперимент по вызову молнии. Они выпустили ракету с медной проволокой в облака, вызвав разряд.[23]
См. также
- Атмосферное электричество
- Шаровая молния
- Тёмная молния
- Молнии Кататумбо
- Молниезащита
- Спрайт (молния)
- Грозовая энергетика
- Молния Зевса
Примечания
- ↑ Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Физический институт им. П.Н. Лебедева, РАН, М., 2004 г. :37
- ↑ В возникновении молний обвинили космические лучи // Lenta.Ru, 09.02.2009
- ↑ 1 2 3 4 Красные Эльфы и Синие Джеты
- ↑ ELVES, a primer: Ionospheric Heating By the Electromagnetic Pulses from Lightning
- ↑ Fractal Models of Blue Jets, Blue Starters Show Similarity, Differences to Red Sprites
- ↑ V.P. Pasko, M.A. Stanley, J.D. Matthews, U.S. Inan, and T.G. Wood (March 14, 2002) "Electrical discharge from a thundercloud top to the lower ionosphere, " Nature, vol. 416, pages 152—154.
- ↑ Появление НЛО объяснили спрайтами . lenta.ru (24 февраля 2009). Дата обращения: 16 января 2010. Архивировано 23 августа 2011 года.
- ↑ John E. Oliver. Encyclopedia of World Climatology. — National Oceanic and Atmospheric Administration, 2005. — ISBN 978-1-4020-3264-6.
- ↑ Annual Lightning Flash Rate . National Oceanic and Atmospheric Administration. Дата обращения: 15 апреля 2011. Архивировано 23 августа 2011 года.
- ↑ Where LightningStrikes . NASA Science. Science News. (5 декабря 2001). Дата обращения: 15 апреля 2011. Архивировано 23 августа 2011 года.
- ↑ К. БОГДАНОВ «МОЛНИЯ: БОЛЬШЕ ВОПРОСОВ, ЧЕМ ОТВЕТОВ». «Наука и жизнь» № 2, 2007
- ↑ Живлюк Ю.Н., Мандельштам С.Л. О температуре молнии и силе грома // ЖЭТФ. 1961. Т. 40, вып. 2. С. 483—487.
- ↑ Н. А. Кун «Легенды и мифы Древней Греции» ООО «Издательство АСТ» 2005—538,[6]с. ISBN 5-17-005305-3 Стр.35-36.
- ↑ Editors: Mariko Namba Walter,Eva Jane Neumann Fridman. Shamanism: an encyclopedia of world beliefs, practices, and culture. — ABC-CLIO, 2004. — Т. 2. — С. 442. — ISBN 1-57607-645-8.
- ↑ Молния // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- ↑ Правила поведения во время грозы . VLBoat.ru. Дата обращения: 17 марта 2010. Архивировано 23 августа 2011 года.
- ↑ Ирина Лукьянчик. Как вести себя во время грозы? Ежедневный познавательный журнал "ШколаЖизни.ру". Дата обращения: 17 марта 2010. Архивировано 23 августа 2011 года.
- ↑ Михайло Михайлович Нечай
- ↑ Р. Г. Рахимов. Башкирский кубыз. Маультроммель. Прошлое, настоящее, будущее. Фольклорное исследование [1]
- ↑ Ядерный взрыв в космосе, на земле и под землёй. (Электромагнитный импульс ядерного взрыва). Сб. статей / Пер. с англ. Ю. Петренко под ред. С. Давыдова. — М.: Воениздат, 1974. — 235 с., С. 5, 7, 11
- ↑ Как вы думаете - что это такое? » DailyTechInfo - Новости науки и технологий, новинки техники. Дата обращения: 13 сентября 2013.
- ↑ Lightning Research Laboratory (UF) . Дата обращения: 13 сентября 2013.
- ↑ Загадку молнии пытаются разгадать в США видео – Online.ua . Дата обращения: 9 апреля 2013. Архивировано 14 апреля 2013 года.
Ссылки
- Фотографии природы — Фотографии молний и пейзажи
- Видео грозы — видео грозы в Киеве
- Молния: больше вопросов, чем ответов — статья о современной точке зрения на молнии в журнале «Наука и жизнь».
- Молнии на видео: уникальные кадры замедленной съемки
- О молниях, и в частности о разряде из тропосферы в стратосферу
- Красные Эльфы и Синие Джеты
- Гигантские джеты (видео)
Литература
- Стекольников И. К., Физика молнии и грозозащита, М. — Л., 1943;
- Разевиг Д. В., Атмосферные перенапряжения на линиях электропередачи, М. — Л., 1959;
- Юман М. А., Молния, пер. с англ., М., 1972;
- Имянитов И. М., Чубарина Е. В., Шварц Я. М., Электричество облаков, Л., 1971;
- Подборка статей по теме на сервере «Наука и Техника» (http://n-t.ru/) — см. здесь: [2]