Теорема Лагранжа об устойчивости равновесия: различия между версиями
Перейти к навигации
Перейти к поиску
[отпатрулированная версия] | [отпатрулированная версия] |
Содержимое удалено Содержимое добавлено
Danneks (обсуждение | вклад) оформление, уточнение категории |
м rq's cleanup |
||
Строка 1: | Строка 1: | ||
{{Дописать}} |
|||
'''Теорема Лагранжа ([[Лагранж, Жозеф Луи|Лагранжа]] — [[Дирихле, Петер Густав Лежён|Дирихле]]) об устойчивости равновесия''' устанавливает достаточное условие устойчивости равновесия консервативной механической системы. Согласно Л.-Д. т., если в положении равновесия [[потенциальная энергия]] [[Консервативная система|консервативной механической системы]] имеет строгий [[минимум]], то такое положение равновесия [[устойчивость по Ляпунову|устойчиво по Ляпунову]]. В частности, из Л.-Д. т. следует, что положение равновесия механической системы в однородном поле тяжести будет устойчивым, когда центр тяжести системы занимает наинизшее положение. |
'''Теорема Лагранжа ([[Лагранж, Жозеф Луи|Лагранжа]] — [[Дирихле, Петер Густав Лежён|Дирихле]]) об устойчивости равновесия''' устанавливает достаточное условие устойчивости равновесия консервативной механической системы. Согласно Л.-Д. т., если в положении равновесия [[потенциальная энергия]] [[Консервативная система|консервативной механической системы]] имеет строгий [[минимум]], то такое положение равновесия [[устойчивость по Ляпунову|устойчиво по Ляпунову]]. В частности, из Л.-Д. т. следует, что положение равновесия механической системы в однородном поле тяжести будет устойчивым, когда центр тяжести системы занимает наинизшее положение. |
||
Строка 5: | Строка 4: | ||
* ''Четаев Н.Г.'' Устойчивость движения. М. 1955. |
* ''Четаев Н.Г.'' Устойчивость движения. М. 1955. |
||
* Физическая энциклопедия. Том 2. М. 1990 |
* Физическая энциклопедия. Том 2. М. 1990 |
||
{{rq| |
{{rq|empty|img}} |
||
[[Категория:Теория устойчивости]] |
[[Категория:Теория устойчивости]] |
Версия от 16:17, 17 июля 2014
Теорема Лагранжа (Лагранжа — Дирихле) об устойчивости равновесия устанавливает достаточное условие устойчивости равновесия консервативной механической системы. Согласно Л.-Д. т., если в положении равновесия потенциальная энергия консервативной механической системы имеет строгий минимум, то такое положение равновесия устойчиво по Ляпунову. В частности, из Л.-Д. т. следует, что положение равновесия механической системы в однородном поле тяжести будет устойчивым, когда центр тяжести системы занимает наинизшее положение.
Литература
- Четаев Н.Г. Устойчивость движения. М. 1955.
- Физическая энциклопедия. Том 2. М. 1990
Для улучшения этой статьи желательно:
|