Ионосфера: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
м Move Шаблон:commonscat parameters to Wikidata
Добавлены частоты отражения от F слоя
Строка 35: Строка 35:
На больших высотах преобладают более лёгкие ионы кислорода (до высот 400—1000 км), а ещё выше — ионы водорода (протоны) и в небольших количествах — ионы гелия.
На больших высотах преобладают более лёгкие ионы кислорода (до высот 400—1000 км), а ещё выше — ионы водорода (протоны) и в небольших количествах — ионы гелия.


Особенностью слоя F является то, что он отражает [[радиоволны]]{{какие}}, что делает возможным передачу радиосигналов [[Коротковолновый диапазон|коротковолнового диапазона]] на значительные расстояния.{{нет АИ|17|12|2013}}
Особенностью слоя F является то, что он отражает [[радиоволны]]{{какие}} в диапазоне частот от нескольких мегагерц до 10 мегагерц, что делает возможным передачу радиосигналов [[Коротковолновый диапазон|коротковолнового диапазона]] на значительные расстояния.{{нет АИ|17|12|2013}}


Несмотря на то, что ионный состав слоя F зависит от [[солнечная активность|солнечной активности]], его способность отражать [[электромагнитные волны]] с [[частота|частотой]], меньшей 10 [[МГц]], стабильна.
Несмотря на то, что ионный состав слоя F зависит от [[солнечная активность|солнечной активности]], его способность отражать [[электромагнитные волны]] с [[частота|частотой]], меньшей 10 [[МГц]], стабильна.

Версия от 08:27, 13 октября 2014

Зависимость температуры газа и концентрации свободных электронов от высоты.
Строение атмосферы

Ионосфе́ра — верхняя часть атмосферы Земли, состоящая из мезосферы, мезопаузы и термосферы, сильно ионизированная вследствие облучения космическими лучами, идущими, в первую очередь, от Солнца.

Ионосфера состоит из смеси газа нейтральных атомов и молекул (в основном азота N2 и кислорода О2) и квазинейтральной плазмы (число отрицательно заряженных частиц лишь примерно равно числу положительно заряженных). Степень ионизации становится существенной уже на высоте 60 километров.

Структура ионосферы

Ионограмма — зависимость плотности плазмы (измеряемой по критической частоте) от высоты над землёй

В зависимости от плотности заряженных частиц N в ионосфере выделяются слои D, Е и F.

Слой D

В области D (60—90 км) концентрация заряженных частиц составляет Nmax~ 10²—10³ см−3 — это область слабой ионизации. Основной вклад в ионизацию этой области вносит рентгеновское излучение Солнца. Также небольшую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60—100 км, космические лучи, а также энергичные частицы магнитосферы (заносимые в этот слой во время магнитных бурь).

Слой D также характеризуется резким снижением степени ионизации в ночное время суток.

В D-слое наиболее полно исследован состав кластерных ионов и протекающие с их участием процессы.[1]

Слой Е

Область Е (90—120 км) характеризуется плотностями плазмы до Nmax~ 105 см−3. В этом слое наблюдается рост концентрации электронов в дневное время, поскольку основным источником ионизации является солнечное коротковолновое излучение, к тому же рекомбинация ионов в этом слое идёт очень быстро и ночью плотность ионов может упасть до 10³ см−3. Этому процессу противодействует диффузия зарядов из области F, находящейся выше, где концентрация ионов относительно велика, и ночные источники ионизации (геокороное излучение Солнца, метеоры, космические лучи и др.).

Спорадически на высотах 100—110 км возникает слой ES, очень тонкий (0,5—1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~105 см−3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы.

Слой E в силу относительно высокой концентрации свободных носителей тока играет важную роль в распространении средних и коротких волн.

Слой Е иногда называют «слой Кеннелли — Хевисайда».

Слой F

Областью F называют теперь всю ионосферу выше 130—140 км. Максимум ионобразования достигается на высотах 150—200 км. Однако вследствие диффузии и относительно долгой длительности жизни ионов образовавшаяся плазма распространяются вверх и вниз от области максимума. Из-за этого максимальная концентрация электронов и ионов в области F находится на высотах 250—400 км.

В дневное время также наблюдается образование «ступеньки» в распределении электронной концентрации, вызванной мощным солнечным ультрафиолетовым излучением. Область этой ступеньки называют областью F1 (150—200 км). Она заметно влияет на распространение коротких радиоволн.

Выше лежащую часть слоя F называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума — N ~ 105—106 см−3.

На больших высотах преобладают более лёгкие ионы кислорода (до высот 400—1000 км), а ещё выше — ионы водорода (протоны) и в небольших количествах — ионы гелия.

Особенностью слоя F является то, что он отражает радиоволны[какие?] в диапазоне частот от нескольких мегагерц до 10 мегагерц, что делает возможным передачу радиосигналов коротковолнового диапазона на значительные расстояния.[источник не указан 4041 день]

Несмотря на то, что ионный состав слоя F зависит от солнечной активности, его способность отражать электромагнитные волны с частотой, меньшей 10 МГц, стабильна.

За открытие слоя F английскому физику Эдварду Виктору Эплтону была присуждена Нобелевская премия по физике в 1947 году.

Моделирование ионосферы

Модель ионосферы представляет собой распределение значений характеристик плазмы в виде функции

  • географического положения,
  • высоты,
  • дня года,
  • а также солнечной и геомагнитной активности.

Для задач геофизики, состояние ионосферной плазмы может быть описано четырьмя основными параметрами:

Распространение радиоволн, например, зависит исключительно от распределения электронной концентрации.

Обычно модель ионосферы — это компьютерная программа. Она может быть основана на физических законах, определяющих распределение характеристик плазмы в пространстве (учитывающих взаимодействие ионов и электронов с солнечным излучением, нейтральной атмосферой и магнитным полем Земли). Также, она может представлять собой статистическое усреднение большого количества экспериментальной информации. Одной из наиболее часто используемых моделей является модель international reference ionosphere (IRI)[2], построенная на статистической обработке большого количества измерений и способная рассчитывать четыре основных характеристики ионосферы, указанные выше. Проект по созданию и усовершенствованию модели IRI является международным и спонсируется такими организациями, как COSPAR[3] и URSI[4]. Основными источниками данных для модели IRI являются:

  • глобальная сеть ионозондов;
  • мощные радары некогерентного рассеяния (находятся на Джикамарке, Арэсибо, Майлстоун Хилл, Малверн и Сан-Сантине);
  • а также спутниковые зонда ISIS и Alouette и
  • точечные измерения с нескольких спутников и ракет.

Модель IRI обновляется ежегодно, с появлением новых экспериментальных данных. Эта модель также была в 2009 году принята Международной организацией по стандартизации (ISO) за международный стандарт TS16457.

Одним из эффективных методов моделирования ионосферы, является так называемая техника ассимиляции данных. Суть этой методики состоит в корректировке физической модели ионосферы с помощью оперативно получаемых экспериментальных данных. Обычная модель ионосферы, основанная на физике исследуемых процессов, не может охватить всего диапазона факторов, влияющих на состоянии плазмы. Это связано с тем, что некоторые необходимые для этого величины сложно измерить экспериментально (скорости ветра на высотах термосферы, прохождение сквозь атмосферу космических лучей и др.). Кроме того, даже влияние хорошо изученных факторов, таких, например, как солнечная активность, трудно предсказать.

В связи с этим, модель, способная обеспечить высокую точность описания распределения характеристик плазмы, должна в режиме реального времени усваивать экспериментальную информацию о состоянии ионосферы. Данные, которые могут быть использованы в такого рода подходе должны быть доступны и актуальны и, кроме всего прочего, оперативно обновляемы. Одним из важнейших источников данных, отвечающих такого рода требованиям, является сеть наземных приемников навигационного сигнала спутниковых систем навигации GPS и ГЛОНАСС. По данным о распространении спутникового навигационного сигнала можно вычислить полное содержание электронов вдоль его траектории. Эти данные доступны и обновляются в нескольких архивах, таких, как, например, архив SOPAC[5]. На данный момент в мире существует несколько моделей ассимиляционного типа. Среди них — разработанная при финансировании Министерства обороны США модель GAIM[6]. В России разработки в данном направлении ведутся в ФГУБ «Центральная Аэрологическая Обсерватория»[7].

История исследования

В 1901 году Гульельмо Маркони принял трансатлантический радиосигнал с помощью 152-метровой антенны в городе Сент-Джонс на острове Ньюфаундленд (сейчас является территорией Канады). Передающая станция в Корнуолл, Англия использовала очень мощный (в сто раз мощнее любого, существовавшего в то время) передатчик, испускавший радиоволны на частоте примерно 500 кГц. Сообщение, которое принял Маркони, состояло из трех точек: обозначение азбуки Морзе для английской буквы S. До того, как сигнал достиг Ньюфаундленда, он дважды отразился от ионосферы. Несмотря на все сомнения и кривотолки, которые вызвал эксперимент Маркони, он успешно повторил его год спустя, приняв сигнал в заливе Глэйс, Новая Шотландия, Канада.

Английский физик Оливер Хэвисайд предположил наличие ионизированного слоя в атмосфере в 1902 году. Его теория включала в себя возможность распространения радиосигнала вокруг Земли, несмотря на её кривизну. Независимо от Хэвисайда эксперименты по дальнему приёму коротких волн через Атлантику между Европой и Америкой проводил американский инженер-электрик Артур Кеннели[8]. Они предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Его назвали слоем Хэвисайда — Кеннели, а затем — ионосферой. Возможно, именно предположения Хэвисайда и Кеннели вкупе с законом излучения абсолютно чёрного тела, выведенного Максом Планком, способствовала бурному развитию радиоастрономии с 1932 года (а также послужило отправной точкой при создании высокочастотных систем типа приемник — передатчик).

В 1926 году шотландский физик Роберт Уотсон-Ватт ввел термин ионосфера в письме, опубликованном только в 1969 году в журнале Nature:

В последнее время термины для описания слоев атмосферы, такие как ‘стратосфера’ и ‘тропосфера’ все прочнее входят в лексикон научного сообщества ... Термин ‘ионосфера’, относящийся к области атмосферы с высокой ионизацией и большими длинами свободных пробегов заряженных частиц, кажется, хорошо подходит в этот ряд.

В 1947 году Эдвард В. Эплтон был удостоен Нобелевской премии по физике за подтверждения существования ионосферы в 1927 году с формулировкой «За исследования физики верхних слоёв атмосферы, в особенности за открытие так называемого слоя Эплтона»[9]

Лойд Беркнер был первым, кто впервые измерил высоту и плотность ионосферы, что несомненно поспособствовало теории распространения коротких радиоволн. Морис Уилкс и Джон Рэтклифф исследовали распространение очень длинных радиоволн в ионосфере. Виталий Гинзбург разработал теорию распространения электромагнитных волн в плазме в частности в ионосфере.[10]

В 1962 году был запущен канадский спутник Alouette-1 для изучения ионосферы.[11] После его успеха также для измерения и исследования ионосферы были отправлены Alouette-2 в 1965 году и два спутника ISIS[12] в 1969 и 1971 годах.

Ссылки

  • Ерухимов Л. М. Ионосфера Земли как космическая плазменная лаборатория — СОЖ, 1998, № 4, с. 71-77.
  • Брюнелли Б. Е., Намгаладзе А. А. Физика ионосферы. — М.: Наука, 1988. — 528 с. — ISBN 5-02-000716-1.
  • Институт ионосферы МОН и НАН Украины

Примечания

  1. Смирнов Б. М. Комплексные ионы. — М., 1983.
  2. Модель IRI на сайте NASA (англ.)
  3. Комитет по Космическим Исследованиям (COSPAR) — Главная страница  (англ.)
  4. Международный Совет по Распространению Радиоволн (URSI) — Главная страница  (англ.)
  5. Страница архива данных систем спутниковой навигации SOPAC  (англ.)
  6. Описание модели GAIM  (англ.)
  7. Результаты и описание ассимиляционной модели ионосферы ФГБУ «ЦАО» Ionosphere.ru
  8. IEEE Legacies: Arthur E. Kennelly (англ.)
  9. The Nobel Prize in Physics: 1947 (англ.)
  10. The Nobel Prize in Physics: 2003 (англ.)
  11. Canadian Space Agency: CSA Alouette Site (англ.)
  12. The ISIS Satellite Program (англ.)

Шаблон:Link FA