Теорема Вейерштрасса о функции на компакте: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Изменил знаки отношений на корректные.
Строка 7: Строка 7:


== Доказательство для R ==
== Доказательство для R ==
Пусть <math>f(x)</math> — функция, отвечающая условиям теоремы (на компакте <math>A</math>), <math>M = \sup_A f</math>. Возьмём последовательность чисел <math>a_m</math> таких, что <math>\lim a_m = M</math> и <math>a_m < M</math>. Для каждого <math>m</math> найдётся точка <math>x_m</math>, такая что
Пусть <math>f(x)</math> — функция, отвечающая условиям теоремы (на компакте <math>A</math>), <math>M = \sup_A f</math>. Возьмём последовательность чисел <math>a_m</math> таких, что <math>\lim a_m = M</math> и <math>a_m \leq M</math>. Для каждого <math>m</math> найдётся точка <math>x_m</math>, такая что <math>a_m \le f(x_m)</math>. Имеем дело с компактом, поэтому, согласно [[Теорема Больцано — Вейерштрасса|теореме Больцано — Вейерштрасса]] из последовательности <math>x_m</math> можно выделить сходящуюся последовательность <math>\{x_{m_k}\}</math>, предел которой лежит в <math>A</math>.
<math>a_m < f(x_m)</math>. Имеем дело с компактом, поэтому, согласно [[Теорема Больцано — Вейерштрасса|теореме Больцано — Вейерштрасса]] из последовательности <math>x_m</math> можно выделить сходящуюся последовательность <math>\{x_{m_k}\}</math>, предел которой лежит в <math>A</math>.


Для любого <math>x_m</math> справедливо <math>a_m < f(x_{m_k}) < M</math>, поэтому, применяя [[предельный переход]], получаем <math>\lim f(x_{m_k}) = M</math> и в силу непрерывности функции существует точка <math>x_0</math> такая, что <math>\lim f(x_{m_k}) = f(x_0)</math> и, следовательно <math>M = f(x_0)</math>.
Для любого <math>x_m</math> справедливо <math>a_m \le f(x_{m_k}) \le M</math>, поэтому, применяя [[предельный переход]], получаем <math>\lim f(x_{m_k}) = M</math> и в силу непрерывности функции существует точка <math>x_0</math> такая, что <math>\lim f(x_{m_k}) = f(x_0)</math> и, следовательно <math>M = f(x_0)</math>.


Таким образом функция <math>f(x)</math> ограничена и достигает своей верхней грани при <math>x = x_0</math>. Аналогично и для нижней грани.
Таким образом функция <math>f(x)</math> ограничена и достигает своей верхней грани при <math>x = x_0</math>. Аналогично и для нижней грани.




== Замечания ==
== Замечания ==

Версия от 09:33, 13 января 2015

Теоре́ма Вейерштра́сса в математическом анализе и общей топологии гласит, что функция, непрерывная на компакте, ограничена на нём и достигает своей верхней и нижней грани.

Формулировка

Пусть дана непрерывная числовая функция, определённая на отрезке, то есть и . Пусть

точные верхняя и нижняя границы множества значений функции соответственно. Тогда эти значения конечны () и достигаются (существуют такие, что ).

Доказательство для R

Пусть  — функция, отвечающая условиям теоремы (на компакте ), . Возьмём последовательность чисел таких, что и . Для каждого найдётся точка , такая что . Имеем дело с компактом, поэтому, согласно теореме Больцано — Вейерштрасса из последовательности можно выделить сходящуюся последовательность , предел которой лежит в .

Для любого справедливо , поэтому, применяя предельный переход, получаем и в силу непрерывности функции существует точка такая, что и, следовательно .

Таким образом функция ограничена и достигает своей верхней грани при . Аналогично и для нижней грани.

Замечания

непрерывна в каждой точке области определения, но не ограничена.

  • Иногда (в учебных курсах) два утверждения (об ограниченности и достижимости границ) разделяются на две теоремы Вейерштрасса — первую и вторую соответственно[1].

Обобщения

Теорема Вейерштрасса для полунепрерывных функций

  • Пусть функция ограничена и полунепрерывна сверху. Тогда
    и
  • Пусть функция ограничена и полунепрерывна снизу. Тогда
    и

См. также

Примечания