Точки Аполлония: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 22: Строка 22:
''Точка Аполлония'' ''Ap'' или X(181)определяется следующим образом:
''Точка Аполлония'' ''Ap'' или X(181)определяется следующим образом:
:Пусть дан треугольник ''ABC''. Пусть вневписанные окружности треугольника ''ABC'', противоположные вершинам ''A'', ''B'', ''C'' есть соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>'' (см. рисунок). Пусть ''E'' - окружность, касающаяся внешним образом сразу трех вневписанных окружностей треугольника ''ABC'' в точках соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>''. Пусть ''A' '', ''B' '', ''C' '' есть точки касания окружности ''E'' с соответствтвующими вневписанными окружностями. Тогда прямые ''AA' '', ''BB' '', ''CC' '' пересекаются в одной точке ''Ap'', которую называют (первой) ''точкой Аполлония'' треугольника ''ABC''.
:Пусть дан треугольник ''ABC''. Пусть вневписанные окружности треугольника ''ABC'', противоположные вершинам ''A'', ''B'', ''C'' есть соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>'' (см. рисунок). Пусть ''E'' - окружность, касающаяся внешним образом сразу трех вневписанных окружностей треугольника ''ABC'' в точках соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>''. Пусть ''A' '', ''B' '', ''C' '' есть точки касания окружности ''E'' с соответствтвующими вневписанными окружностями. Тогда прямые ''AA' '', ''BB' '', ''CC' '' пересекаются в одной точке ''Ap'', которую называют (первой) ''точкой Аполлония'' треугольника ''ABC''.
* Решением упомянутой выше частной [[задача Аполлония|задачи Аполлония]] является указанная
окружность ''E'', касающаяся трех данных окружностей ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>''внешним образом.
* Указанная ''точка Аполлония'' ''Ap'' является точкой пересечения трех перпендикуляров к сторонам треугольника ''ABC'', опущенных из точек касаний ''A' '', ''B' '' и ''C' '' с соответсвующими вневписанными окружностями треугольника ''ABC'', образованного совместными попарными касательными линиями трех упомянутых выше окружностей ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>''.


== Трилинейные координаты==
Трилинейные координаты ''точка Аполлония'' ''Ap'':

:( ''a'' ( ''b'' + ''c'' )<sup>2</sup> / ( ''b'' + ''c'' &minus; ''a'' ) : ''b'' ( ''c'' + ''a'' )<sup>2</sup> / ( ''c'' + ''a'' &minus; ''b'' ) : ''c'' ( ''a'' + ''b'' )<sup>2</sup> / ( ''a'' + ''b'' &minus; ''c'' )
:=( ( sin ''A'' cos ( ''B''/2 &minus; ''C''/2 ) )<sup>2</sup> : ( sin ''B'' cos (''C''/2 &minus; ''A''/2) )<sup>2</sup> : ( sin ''C'' cos (''A''/2 &minus; ''B''/2) )<sup>2</sup> )

==References==
{{reflist}}


{{rq|stub|sources|topic=math}}
{{rq|stub|sources|topic=math}}

Версия от 12:28, 7 сентября 2015

Точки Аполлония выделены зелёным

Точки Аполлония (иногда изодинамические центры) — две такие точки, расстояние от которых до вершин треугольника обратно пропорциональны сторонам, которые противолежат этим вершинам.


Свойства

Пример применения точки Аполлония к решению задачи Аполлония

Подробнее см. Apollonius point (Точка Аполлония на англ. яз.) на сайте: https://en.wikipedia.org/wiki/Apollonius_point .

Определение

Точка Аполлония Ap или X(181)определяется следующим образом:

Пусть дан треугольник ABC. Пусть вневписанные окружности треугольника ABC, противоположные вершинам A, B, C есть соответственно EA, EB, EC (см. рисунок). Пусть E - окружность, касающаяся внешним образом сразу трех вневписанных окружностей треугольника ABC в точках соответственно EA, EB, EC. Пусть A' , B' , C' есть точки касания окружности E с соответствтвующими вневписанными окружностями. Тогда прямые AA' , BB' , CC' пересекаются в одной точке Ap, которую называют (первой) точкой Аполлония треугольника ABC.

окружность E, касающаяся трех данных окружностей EA, EB и ECвнешним образом.

  • Указанная точка Аполлония Ap является точкой пересечения трех перпендикуляров к сторонам треугольника ABC, опущенных из точек касаний A' , B' и C' с соответсвующими вневписанными окружностями треугольника ABC, образованного совместными попарными касательными линиями трех упомянутых выше окружностей EA, EB и EC.

Трилинейные координаты

Трилинейные координаты точка Аполлония Ap:

( a ( b + c )2 / ( b + ca ) : b ( c + a )2 / ( c + ab ) : c ( a + b )2 / ( a + bc )
=( ( sin A cos ( B/2 − C/2 ) )2 : ( sin B cos (C/2 − A/2) )2 : ( sin C cos (A/2 − B/2) )2 )

References

См. также