Законы Ньютона: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
категория
Нет описания правки
Строка 1: Строка 1:
'''Законы Ньютона''' — законы [[Классическая механика|классической механики]], позволяющие записать уравнения движения для любой [[механика|механической системы]].
'''Законы Ньютона''' — законы [[Классическая механика|классической механики]], позволяющие записать уравнения движения для любой [[механика|механической системы]].




== Формулировка законов Ньютона ==
== Формулировка законов Ньютона ==

Версия от 16:31, 9 февраля 2008

Законы Ньютона — законы классической механики, позволяющие записать уравнения движения для любой механической системы.

Формулировка законов Ньютона

Первый закон Ньютона

  • Первый закон Ньютона гласит: существуют системы отсчёта (называемые инерциальными), в которых замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции.

Инерциальная система отсчёта - это система отсчёта, связанная со свободным невращающимся телом. Свободное тело — тело, не взаимодействующее с другими телами.

Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к телу силой и ускорением этого тела. Один из трех законов Ньютона.

Второй закон Ньютона утверждает, что ускорение, которое получает тело, прямо пропорционально приложенной к телу силе и обратно пропорционально массе тела.

Этот закон записывается в виде формулы:

=


где — ускорение тела, — сила, приложенная к телу, а m — масса тела.

Или, в более известном виде:

=

Если на тело действуют несколько сил, то во втором законе Ньютона под подразумевается равнодействующая всех сил.

В случае, если масса тела меняется со временем, то второй закон Ньютона записывается в более общем виде:

где — импульс (количество движения) тела, t — время, а — производная по времени. Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта. →

В данном законе как частный случай заключен первый закон Ньютона. Это можно видеть если = 0 (т.е. если на тело не действуют силы или равнодействующая сил равна нулю) при этом соответственно получаем что и = 0, а значит, тело сохраняет состояние покоя или равномерного прямолинейного движения.

Третий закон Ньютона

  • Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия, F21 = −F12. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон: Тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

Комментарии к законам Ньютона

Силы инерции

Законы Ньютона, строго говоря, справедливы только в инерциальных системах отсчета. Если мы честно запишем уравнение движения тела в неинерциальной системе отсчета, то оно будет по виду отличаться от второго закона Ньютона. Однако часто, для упрощения рассмотрения, вводят некую фиктивную «силу инерции», и тогда эти уравнения движения переписываются в виде, очень похожем на второй закон Ньютона. Математически здесь все корректно, но с точки зрения физики новую фиктивную силу нельзя рассматривать как нечто реальное, как результат некоторого реального взаимодействия. Ещё раз подчеркнем: «сила инерции» — это лишь удобная параметризация того, как отличаются законы движения в инерциальной и неинерциальной системах отсчета.

Законы Ньютона и лагранжева механика

Законы Ньютона — не самый глубокий уровень формулирования классической механики. В рамках лагранжевой механики имеется одна-единственная формула (запись механического действия) и один-единственный постулат (тела движутся так, чтобы действие было минимальным), и из этого можно вывести все законы Ньютона. Более того, в рамках лагранжева формализма можно легко рассмотреть гипотетические ситуации, в которых действие имеет какой-либо другой вид. При этом уравнения движения станут уже непохожими на законы Ньютона, но сама классическая механика будет по-прежнему применима...

Решение уравнений движения

Уравнение F = ma (то есть второй закон Ньютона) является дифференциальным уравнением второго порядка, поскольку ускорение есть вторая производная от координаты по времени. Это значит, что эволюцию механической системы во времени можно однозначно определить, если задать её начальные координаты и начальные скорости. Заметим, что если бы уравнения, описывающие наш мир, были бы уравнениями первого порядка, то из нашего мира исчезли бы такие явления, как инерция, колебания, волны.

См. также