Ро-алгоритм Полларда: различия между версиями
[непроверенная версия] | [непроверенная версия] |
KAlexeyV (обсуждение | вклад) м Удаление повторений ссылок на статьи. Pollard 1975 |
KAlexeyV (обсуждение | вклад) м Уточнение ссылок на АИ |
||
Строка 6: | Строка 6: | ||
== История алгоритма == |
== История алгоритма == |
||
В конце [[1960-е годы|60-х годов XX века]] [[Флойд, Роберт|Роберт Флойд]] придумал достаточно эффективный [[Алгоритм Флойда поиска длины цикла|алгоритм поиска длины цикла]] в последовательности, также известный, как алгоритм «черепаха и заяц»{{sfn|Floyd|1967|с=636–644|name=Floyd_cycle_len}}. [[Поллард, Джон|Джон Поллард]], [[Кнут, Дональд Эрвин|Дональд Кнут]] и другие математики проанализировали поведение этого алгоритма в среднем случае. Было предложено несколько модификаций и улучшений алгоритма{{sfn|Brent|1980|с=176|name=Brent_bit_20}}. |
В конце [[1960-е годы|60-х годов XX века]] [[Флойд, Роберт|Роберт Флойд]] придумал достаточно эффективный [[Алгоритм Флойда поиска длины цикла|алгоритм поиска длины цикла]] в последовательности, также известный, как алгоритм «черепаха и заяц»{{sfn|Floyd|1967|с=636–644|name=Floyd_cycle_len}}. [[Поллард, Джон|Джон Поллард]], [[Кнут, Дональд Эрвин|Дональд Кнут]] и другие математики проанализировали поведение этого алгоритма в среднем случае. Было предложено несколько модификаций и улучшений алгоритма{{sfn|Brent|1980|с=176|loc= An improved Monte Carlo factorization algorithm|name=Brent_bit_20}}. |
||
В 1975 году Поллард опубликовал статью{{sfn|Pollard|1975|с=176|loc=A Monte Carlo method for factorization|name=Pollard_bit}}, в которой он, основываясь на алгоритме Флойда обнаружения циклов, изложил идею алгоритма факторизации чисел, работающего за время, пропорциональное <math>N^{1/4}</math><ref name="Pollard_bit" /><ref name="Pollard_article" />. |
В 1975 году Поллард опубликовал статью{{sfn|Pollard|1975|с=176|loc=A Monte Carlo method for factorization|name=Pollard_bit}}, в которой он, основываясь на алгоритме Флойда обнаружения циклов, изложил идею алгоритма факторизации чисел, работающего за время, пропорциональное <math>N^{1/4}</math><ref name="Pollard_bit" /><ref name="Pollard_article" />. |
||
Строка 49: | Строка 49: | ||
Поэтому, нет необходимости проверять все пары <math>(x_{i}, x_{j})</math>, а можно ограничиться парами вида <math>(x_{i}, x_{j})</math>, где <math>j = 2^k</math>, и <math>k</math> пробегает набор последовательны значений 1, 2, 3, ..., а <math>i</math> принимает значения из интервала <math>[2^{k}+1; 2^{k+1}]</math>. Например, <math>k=3</math>, <math>j=2^3=8</math>, а <math>i\in [9;16]</math>{{sfn|Ишмухаметов|2011|с=64|name=Ishmuhammetov}}. |
Поэтому, нет необходимости проверять все пары <math>(x_{i}, x_{j})</math>, а можно ограничиться парами вида <math>(x_{i}, x_{j})</math>, где <math>j = 2^k</math>, и <math>k</math> пробегает набор последовательны значений 1, 2, 3, ..., а <math>i</math> принимает значения из интервала <math>[2^{k}+1; 2^{k+1}]</math>. Например, <math>k=3</math>, <math>j=2^3=8</math>, а <math>i\in [9;16]</math>{{sfn|Ишмухаметов|2011|с=64|name=Ishmuhammetov}}. |
||
Эта идея была предложена [[Брент, Ричард|Ричардом Брентом]] в [[1980 год|1980]] году{{sfn|Brent|1980|с=176-184|name=Brent_bit_20_article}} и позволяет уменьшить количество выполняемых операций приблизительно на 25%{{sfn|Reisel|2012|loc=Selected Areas in Cryptography. Prime Numbers and Computer Methods for Factorization. 2nd ed.|name=Reisel}}. |
Эта идея была предложена [[Брент, Ричард|Ричардом Брентом]] в [[1980 год|1980]] году{{sfn|Brent|1980|с=176-184|loc=An improved Monte Carlo factorization algorithm|name=Brent_bit_20_article}} и позволяет уменьшить количество выполняемых операций приблизительно на 25%{{sfn|Reisel|2012|loc=Selected Areas in Cryptography. Prime Numbers and Computer Methods for Factorization. 2nd ed.|name=Reisel}}. |
||
Еще одна вариация ρ-алгоритма полларда была разработана Флойдом. Согласно Флойду, значение <math>y</math> обновляется на каждом шаге по формуле <math>y = F^2(y) = F(F(y))</math>, поэтому на шаге ''i'' будут получены значения <math>x_{i} = F^{i}(x_{0})</math>, <math>y_{i} = x_{2i} = F^{2i}(x_{0})</math>, и НОД на этом шаге вычисляется для <math>N</math> и <math>y-x</math><ref name="Ishmuhammetov" />. |
Еще одна вариация ρ-алгоритма полларда была разработана Флойдом. Согласно Флойду, значение <math>y</math> обновляется на каждом шаге по формуле <math>y = F^2(y) = F(F(y))</math>, поэтому на шаге ''i'' будут получены значения <math>x_{i} = F^{i}(x_{0})</math>, <math>y_{i} = x_{2i} = F^{2i}(x_{0})</math>, и НОД на этом шаге вычисляется для <math>N</math> и <math>y-x</math><ref name="Ishmuhammetov" />. |
Версия от 10:01, 7 ноября 2015
ρ-Алгоритм — предложенный Джоном Поллардом[англ.] в 1975 году алгоритм, служащий для факторизации (разложения на множители) целых чисел. Данный алгоритм основывается на алгоритме Флойда поиска длины цикла в последовательности[англ.]* и некоторых следствиях из парадокса дней рождений. Алгоритм наиболее эффективен при факторизации составных чисел с достаточно малыми множителями в разложении. Сложность алгоритма оценивается как [1].
ρ-алгоритм Полларда строит числовую последовательность, элементы которой образуют цикл, начиная с некоторого номера n, что может быть проиллюстрировано, расположением чисел в виде греческой буквы ρ, что послужило названием семейству алгоритмов[2][3].
История алгоритма
В конце 60-х годов XX века Роберт Флойд придумал достаточно эффективный алгоритм поиска длины цикла в последовательности, также известный, как алгоритм «черепаха и заяц»[4]. Джон Поллард, Дональд Кнут и другие математики проанализировали поведение этого алгоритма в среднем случае. Было предложено несколько модификаций и улучшений алгоритма[5].
В 1975 году Поллард опубликовал статью[6], в которой он, основываясь на алгоритме Флойда обнаружения циклов, изложил идею алгоритма факторизации чисел, работающего за время, пропорциональное [6][1]. Автор алгоритма назвал его методом факторизации Монте-Карло, отражая кажущуюся случайность чисел, генерируемых в процессе вычисления. Однако позже метод всё-таки получил своё современное название — ρ-aлгоритм Полларда[7].
В 1981 году Ричард Брент и Джон Поллард с помощью алгоритма нашли наименьшие делители чисел Ферма при [8].
Так, , где — простое число, состоящее из 62 десятичных цифр.
В рамках проекта «Cunningham project[англ.]» алгоритм Полларда помог найти делитель длиной 19 цифр числа . Большие делители также могли бы быть найдены, однако открытие метода факторизации с помощью эллиптических кривых сделало алгоритм Полларда неконкурентоспособным[9].
Описание алгоритма
Оригинальная версия
Рассмотривается последовательность целых чисел , такая что и , где - число, которое нужно факторизовать. Оригинальный алгоритм выглядит следующим образом[10][6].
- 1. Вычисляются тройки чисел
- , где .
- Причём каждая такая тройка получается из предыдущей.
- 2. Каждый раз, когда число кратно числу (скажем, ), вычисляется наибольший общий делитель любым известным методом.
- 3. Если , то частичное разложения числа найдено, причём .
- Найденный делитель может быть составным, поэтому его также необходимо факторизовать. Если число составное, то продолжаем алгоритм с модулем .
- 4. Вычисления повторяются раз. Если при этом число не было до конца факторизовано, выбирается, например, другое начальное число .
Современная версия
Пусть составное целое положительное число, которое требуется разложить на множители. Алгоритм выглядит следующим образом[11]:
- Случайным образом выбирается небольшое число [12] и строится последовательность , определяя каждое следующее как .
- Одновременно на каждом i-ом шаге вычисляется для каких-либо , таких, что , например, .
- Если , то вычисление заканчивается, и найденное на предыдущем шаге число является делителем . Если не является простым числом, то процедуру поиска делителей продолжается, взяв в качестве число .
На практике функция выбирается не слишком сложной для вычисления (но в то же время не линейным многочленом), при условии того, что она не должна порождать взаимно однозначное отображение. Обычно в качестве выбираются функции [12] или [13]. Однако функции и не подходят[10].
Если известно, что для делителя числа справедливо при некотором , то имеет смысл использовать [10].
Существенным недостатком алгоритма в такой реализации является необходимость хранить большое число предыдущих значений .
Улучшения алгоритма
Изначальная версия алгоритма обладает рядом недостатков. В настоящий момент существует несколько подходов к улучшению оригинального алгоритма.
Пусть . Тогда, если , то , поэтому, если пара даёт решение, то решение даст любая пара .
Поэтому, нет необходимости проверять все пары , а можно ограничиться парами вида , где , и пробегает набор последовательны значений 1, 2, 3, ..., а принимает значения из интервала . Например, , , а [11].
Эта идея была предложена Ричардом Брентом в 1980 году[14] и позволяет уменьшить количество выполняемых операций приблизительно на 25%[15].
Еще одна вариация ρ-алгоритма полларда была разработана Флойдом. Согласно Флойду, значение обновляется на каждом шаге по формуле , поэтому на шаге i будут получены значения , , и НОД на этом шаге вычисляется для и [11].
Пример факторизации числа
Пусть , , , .
i | xi | yi | НОД(|xi − yi|, 8051) |
---|---|---|---|
1 | 5 | 26 | 1 |
2 | 26 | 7474 | 1 |
3 | 677 | 871 | 97 |
Таким образом, 97 — нетривиальный делитель числа 8051. Используя другие варианты полинома , можно также получить делитель 83.
Обоснование ρ-алгоритма Полларда
Алгоритм основывается на известном парадоксе дней рождения.
Парадокс дней рождений, кратко:
Пусть . Для случайной выборки из элементов, каждый их которых меньше , где , вероятность того, что два элемента окажутся одинаковыми .
Следует отметить, что вероятность в парадоксе дней рождения достигается при .
Пусть последовательность состоит из разностей , проверяемых в ходе работы алгоритма. Определяется новая последовательность , где , — меньший из делителей числа .
Все члены последовательности меньше . Если рассматривать её как случайную последовательность целых чисел, меньших , то, согласно парадоксу дней рождения, вероятность того, что среди её членов попадутся два одинаковых, превысит при , тогда должно быть не меньше .
Если , тогда , то есть, для некоторого целого . Если , что выполняется с большой вероятностью, то искомый делитель числа будет найден как . Поскольку , то с вероятностью, превышающей , делитель будет найден за итераций[11].
Сложность алгоритма
Чтобы оценить сложность алгоритма, рассматривается последовательность, строящаяся в процессе вычислений, как случайная (разумеется, ни о какой строгости при этом говорить нельзя). Чтобы полностью факторизовать число длиной бит, достаточно найти все его делители, не превосходящие , что требует максимум порядка арифметических операций, или битовых операций.
Поэтому сложность алгоритма оценивается, как [16]. Однако в этой оценке не учитываются накладные расходы по вычислению наибольшего общего делителя. Полученная сложность алгоритма, хотя и не является точной, достаточно хорошо согласуется с практикой.
Справедливо следующее утверждение: пусть — составное число. Тогда существует такая константа , что для любого положительного числа вероятность события, состоящего в том, что ρ-алгоритм Полларда не найдет нетривиального делителя за время , не превосходит величины . Данное утверждение следует из парадокса дней рождения[17].
Особенности реализации
Объем памяти, используемый алгоритмом, можно значительно уменьшить.
int Rho-Поллард (int N) { int x = random(1, N-2); int y = 1; int i = 0; int stage = 2; while (Н.О.Д.(N, abs(x - y)) == 1) { if (i == stage ){ y = x; stage = stage*2; } x = (x*x + 1) (mod N); i = i + 1; } return Н.О.Д(N, abs(x-y)); }
В этом варианте вычисление требует хранить в памяти всего три переменные , , и , что выгодно отличает алгоритм в такой реализации от других методов факторизации чисел[11].
Распараллеливание алгоритма
Алгоритм Полларда допускает распараллеливание с использованием как систем с разделяемой памятью, так и систем с распределенной памятью (передача сообщений), однако второй случай является наиболее интересным с практической точки зрения[18].
Система с распределенной памятью
Существующий метод распалаллеливания заключается в том, что каждый вычислительный узел исполняет один и тот же последовательный алгоритм, однако, исходное число и/или полином берутся различными. Для упрощения распаралеливания, предлагается получать их из генератора случайных чисел. Однако такая параллельная реализация не даёт линейного ускорения[19].
Предположим что есть одинаковых исполнителей. Если мы используем различных последовательностей (т.е. различных полиномов ), то вероятность того, что первые чисел в этих последовательностях будут различными по модулю будет примерно равна . Таким образом, максимальное ускорение можно оценить как [9].
Ричард Крэндалл предположил, что достижимо ускорение , однако данное утверждение пока не проверено[20].
Система с общей памятью
Предыдущий метод, очевидно, можно использовать и на системах с общей памятью, однако, гораздо разумнее исспользовать единый генератор [21].
См. также
- P-1 алгоритм Полларда
- P-метод Полларда дискретного логарифмирования
- P+1 алгоритм Уильямса
- Метод пробных делений
- Метод Ферма
- Факторизация с помощью эллиптических кривых
- Общий метод решета числового поля
Примечания
- ↑ 1 2 Pollard, 1974, с. 521–528.
- ↑ Christensen, 2009, 3.3.3.0.
- ↑ Chatterjee, 2009, 5.2.2.
- ↑ Floyd, 1967, с. 636–644.
- ↑ Brent, 1980, An improved Monte Carlo factorization algorithm, с. 176.
- ↑ 1 2 3 Pollard, 1975, A Monte Carlo method for factorization, с. 176.
- ↑ Koshy, 2007, Elementary Number Theory with Applications.
- ↑ Childs, 2009, A Concrete Introduction to Higher Algebra.
- ↑ 1 2 Brent-1999, 1999, Some parallel algorithms for integer factorization..
- ↑ 1 2 3 Pollard, 1975, A Monte Carlo method for factorization.
- ↑ 1 2 3 4 5 Ишмухаметов, 2011, с. 64.
- ↑ 1 2 Mollin, 2006, с. 215-216.
- ↑ Золотых Н. Ю. Лекции по компьютерной алгебре. Лекция 11. ρ-метод Полларда.
- ↑ Brent, 1980, An improved Monte Carlo factorization algorithm, с. 176-184.
- ↑ Reisel, 2012, Selected Areas in Cryptography. Prime Numbers and Computer Methods for Factorization. 2nd ed..
- ↑ Cormen, 2001, Introduction to Algorithms. Section 31.9. Integer Factorization. Pollard's rho heuristic..
- ↑ Ишмухаметов, 2011, с. 63.
- ↑ Косяков, 2014, с. 12.
- ↑ Fabian Kuhn, René Struik. Random Walks Revisited: Extensions of Pollard’s Rho Algorithm for Computing Multiple Discrete Logarithms (англ.) // Selected Areas in Cryptography / Serge Vaudenay, Amr M. Youssef. — Springer Berlin Heidelberg, 2001-08-16. — P. 212-229. — ISBN 978-3-540-43066-7, 978-3-540-45537-0. — doi:10.1007/3-540-45537-x_17.
- ↑ Crandall, 1999, Parallelization of Polldar-rho factorization.
- ↑ Косяков, 2014, с. 19.
Литература
- Василенко О. Н. Теоретико-числовые алгоритмы в криптографии. — М.: МЦНМО, 2003. — 328 с. — ISBN 5-94057-103-4.
- Ишмухаметов Ш. Т. Методы факторизации натуральных чисел: Учебное пособие / Захаров В.М.. — Казань: Казанский Университет, 2011. — С. 61-64. — 190 с. — ISBN 978-3-659-17639-5.
- Косяков М.С. Введение в распределенные вычисления / НИУ ИТМО. — СПб., 2014. — 155 с.
- Соловьев Ю.П., Садовничий В.А., Шавгулидзе Е.Т., Белокуров В.В. Эллиптические кривые и современные алгоритмы теории чисел. — М.: Ин-т компьют. исслед., 2003. — 192 с. — ISBN ISBN 5-939722-27-X.
- Brent R.P. Некоторые параллельные алгоритмы факторизации чисел (англ.) = Some parallel algorithms for integer factorization. — 1999. — С. 7. — doi:10.1017/S0305004100049252.
- Brent R.P. An improved Monte Carlo factorization algorithm (англ.) // BIT Numerical Mathematics. — 1980-06-01. — Vol. 20, iss. 2. — P. 176-184. — ISSN 1572-9125. — doi:10.1007/BF01933190.
- Chatterjee S., Sarkar P. Introduction (англ.) // Identity-Based Encryption. — Boston: Springer US, 2008. — ISBN 978-1-59693-238-8.
- Childs, Lindsay N. Congruences // Введение в высшую алгебру = Concrete Introduction to Higher Algebra. — 3-е изд. — USA: Springer, 2009. — С. 471-473. — 603 с. — ISBN 978-0-387-74725-5.
- Chris Christensen. Review of Modern Cryptanalysis: Techniques for Advanced Code Breaking by Christopher Swenson // Cryptologia. — 2009-01-27. — Т. 33, вып. 1. — ISSN 0161-1194. — doi:10.1080/01611190802293397.
- Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Алгоритмы: построение и анализ = Introduction to algorithms. — 2-е изд. — USA: MIT Press, 2001. — С. 897-907. — 1180 с. — ISBN 9780262032933.
- Crandall R.E. Распараллеливание P-алгоритма факторизации Полларда (англ.) = Parallelization of Polldar-rho factorization. — 1999.
- Koshy T. Congruences // Элементарная теория чисел и ее приложения = Elementary Number Theory with Applications. — 2-е изд. — USA: Academic Press, 2007. — С. 238. — 771 с. — ISBN 9780123724878.
- Mollin R.A. An Introduction to Cryptography / Rosen K.H.. — 2. — London: Chapman and Hall, 2006. — 413 с. — ISBN 9781584886181.
- Pollard J. M. A Monte Carlo method for factorization // BIT Numerical Mathematics. — 1975. — Vol. 15, № 3. — P. 331–334.
- Pollard J.M. Theorems on factorization and primality testing // Mathematical Proceedings of the Cambridge Philosophical Society. — 1974. — Т. 76, вып. 03. — С. 521–528. — ISSN 1469-8064. — doi:10.1017/S0305004100049252.
- Pollard J. M. Методы факторизации и проверка простоты. (англ.) = Theorems on factorization and primality testing. // Математические Труды Кэмбриджского Философского Общества (Mathematical Proceedings of the Cambridge Philosophical Society). — 1974. — Т. 76, № 3. — С. 521. — doi:10.1017/S0305004100049252.
- Reisel, H. Простые числа и компьютерные методы факторизации = Prime Numbers and Computer Methods for Factorization. — 2-е изд. — USA: Springer, 2012. — С. 183. — 464 с. — ISBN 978-0-8176-8297-2.
- Robert W. Floyd. Nondeterministic Algorithms // J. ACM. — 1967. — Т. 14, вып. 4. — С. 636–644. — ISSN 0004-5411. — doi:10.1145/321420.321422.
Статья является кандидатом в добротные статьи с 20 сентября 2015. |