Точки Аполлония: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Порядок разделов. Шаблон:ll для ссылок на иноязычные статьи. Примечания должны быть в отдельном разделе.
Строка 21: Строка 21:


* ''Точка Аполлония'' ''Ap'' или X(181)определяется следующим образом:
* ''Точка Аполлония'' ''Ap'' или X(181)определяется следующим образом:
Пусть дан треугольник ''ABC''. Пусть [[вневписанная окружность| вневписанные окружности]]и треугольника ''ABC'', противоположные вершинам ''A'', ''B'', ''C'' есть соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>'' (см. рисунок). Пусть ''E'' - '''окружность Аполлония''' ), касающаяся внешним образом сразу трех вневписанных окружностей треугольника ''ABC'' в точках соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>'' (см. рисунок). Пусть ''A' '', ''B' '' и ''C' '' есть точки касания окружности ''E'' с соответствтвующими вневписанными окружностями. Тогда прямые ''AA' '', ''BB' '' и ''CC' '' пересекаются в одной точке ''Ap'', которую называют (первой) ''точкой Аполлония'' треугольника ''ABC''.
Пусть дан треугольник ''ABC''. Пусть [[вневписанная окружность| вневписанные окружности]] треугольника ''ABC'', противоположные вершинам ''A'', ''B'' и ''C'', есть соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'', ''E<sub>C</sub>'' (см. рисунок). Пусть ''E'' - '''окружность Аполлония''' (на рис. справа показана зеленым цветом), касающаяся внешним образом сразу трех [[вневписанная окружность|вневписанных окружностей]] треугольника ''ABC'' в точках соответственно ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>'' (см. рисунок). Пусть ''A' '', ''B' '' и ''C' '' есть точки касания окружности ''E'' с соответствтвующими вневписанными окружностями. Тогда прямые ''AA' '', ''BB' '' и ''CC' '' пересекаются в одной точке ''Ap'', которую называют (первой) ''точкой Аполлония'' треугольника ''ABC''.
* Решением упомянутой выше частной [[задача Аполлония|задачи Аполлония]] является указанная
* Решением упомянутой выше частной [[задача Аполлония|задачи Аполлония]] является указанная
окружность ''E'', касающаяся трех данных окружностей ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>'' внешним образом.
окружность ''E'', касающаяся трех данных окружностей ''E<sub>A</sub>'', ''E<sub>B</sub>'' и ''E<sub>C</sub>'' внешним образом.

Версия от 16:31, 16 ноября 2015

Точки Аполлония выделены зелёным

Точки Аполлония (иногда изодинамические центры[1]) — две такие точки, расстояние от которых до вершин треугольника обратно пропорциональны сторонам, которые противолежат этим вершинам.

Свойства

Пример применения точки Аполлония к решению задачи Аполлония

Определение

  • Точка Аполлония Ap или X(181)определяется следующим образом:

Пусть дан треугольник ABC. Пусть вневписанные окружности треугольника ABC, противоположные вершинам A, B и C, есть соответственно EA, EB, EC (см. рисунок). Пусть E - окружность Аполлония (на рис. справа показана зеленым цветом), касающаяся внешним образом сразу трех вневписанных окружностей треугольника ABC в точках соответственно EA, EB и EC (см. рисунок). Пусть A' , B' и C' есть точки касания окружности E с соответствтвующими вневписанными окружностями. Тогда прямые AA' , BB' и CC' пересекаются в одной точке Ap, которую называют (первой) точкой Аполлония треугольника ABC.

окружность E, касающаяся трех данных окружностей EA, EB и EC внешним образом.

  • Проекции точки Аполлония Ap на стороны треугольника ABC являются вершинами равностороннего треугольника.

Замечание

На рисунке указанная точка Аполлония Ap изображена, как точка пересечения трех перпендикуляров к сторонам треугольника ABC, опущенных из точек касаний A' , B' и C' с соответсвующими вневписанными окружностями треугольника ABC, образованного совместными попарными касательными линиями трех упомянутых выше окружностей EA, EB и EC. Хотя эта точка Ap лежит в точке пересечения трех отрезков AA' , BB' и CC' , но они не перпендикулярны сторонам треугольника. Действительно, ее проекции на стороны треугольника ABC являются вершинами равностороннего треугольника, а перпендикуляры к сторонам треугольника пересекаются в его ортоцентре. Проекции ортоцентра на стороны треугольника не являются вершинами равностороннего треугольника. Ортоцентр и точка Аполлония Ap совпадают только у равностороннего треугольника. У других треугольников они не совпадают.

Трилинейные координаты

Трилинейные координаты точки Аполлония Ap:

( a ( b + c )2 / ( b + ca ) : b ( c + a )2 / ( c + ab ) : c ( a + b )2 / ( a + bc )
=( ( sin A cos ( B/2 − C/2 ) )2 : ( sin B cos (C/2 − A/2) )2 : ( sin C cos (A/2 − B/2) )2 )

См. также

Примечания

  1. Katarzyna Wilczek (2010). "The harmonic center of a trilateral and the Apollonius point of a triangle". Journal of Mathematics and Applications. 32: 95—101.
  2. Kimberling, Clark Apollonius Point. Дата обращения: 16 мая 2012.
  3. C. Kimberling; Shiko Iwata; Hidetosi Fukagawa (1987). "Problem 1091 and Solution". Crux Mathematicorum. 13: 217—218.

Ссылки