Точки Аполлония: различия между версиями
[непроверенная версия] | [непроверенная версия] |
MBHbot (обсуждение | вклад) м replaced: ее → её |
|||
Строка 59: | Строка 59: | ||
== См. также == |
== См. также == |
||
⚫ | |||
⚫ | |||
* [[Аполлоний Пергский]] |
* [[Аполлоний Пергский]] |
||
⚫ | |||
⚫ | |||
* [[Задача Аполлония]] |
* [[Задача Аполлония]] |
||
⚫ | |||
⚫ | |||
* [[Точка Парри|Окружность Парри]] |
|||
* [[Теорема Аполлония]] |
* [[Теорема Аполлония]] |
||
⚫ | |||
⚫ | |||
⚫ | |||
* [[Точка Ферма]] |
* [[Точка Ферма]] |
||
⚫ | |||
* [[Замечательные точки треугольника]] |
|||
* [[Треугольник]] |
* [[Треугольник]] |
||
* [[Треугольник#Отрезки и окружности, связанные с треугольником|Отрезки и окружности, связанные с треугольником]] |
* [[Треугольник#Отрезки и окружности, связанные с треугольником|Отрезки и окружности, связанные с треугольником]] |
Версия от 08:06, 18 марта 2016
Точки Аполлония (иногда изодинамические центры[1]) — две такие точки, расстояние от которых до вершин треугольника обратно пропорциональны сторонам, которые противолежат этим вершинам.
Свойства
- Окружности, построенные как на диаметре на отрезке, соединяющем основания внутренней и внешней биссектрисы, выпущенных из одного угла, проходят через точки Аполлония.
- Точки Аполлония лежат на прямой, соединяющей центр описанной окружности с точкой Лемуана. Эта прямая называется осью Брокара.
- Подерные треугольники точек Аполлония правильные (иногда это свойство принимается за определение).
- Последнее свойство можно сформулировать иначе: три ортогональные проекции точек Аполлония на стороны данного треугольника являются вершинами правильного треугольника.
- Точки Аполлония изогонально сопряжены точкам Торричелли.
- Построим две прямые, каждая из которых проходит через точку Аполлония и точку Торричелли, отличную от изогонально сопряжённой ей. Такие прямые пересекутся в точке пересечения медиан (в центроиде треугольника).
- Пусть ABC — треугольник на плоскости. Окружность, проходящая через центроид и две точки Аполлония треугольника ABC, называется окружностью Парри треугольника ABC (на рисунке справа она красная). Она также проходит через точку Парри (красная точка в черном кольце).
- Рассмотрим три сферы, касающиеся плоскости в точках и друг друга внешним образом. Если радиусы этих сфер равны , то и т. д. Поэтому две сферы касающиеся трёх данных и плоскости, будут касаться плоскости в точках Аполлония.
Пример применения точки Аполлония к решению задачи Аполлония
Задача Аполлония — построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. Один из вариантов этой задачи, когда третья окружность касается трёх внутренних внешним образом, решается с помощью введения так называемой точки Аполлония?! Ap (Apollonius point[2][3]).
- Точка Аполлония Ap в Энциклопедии центров треугольника именуется как центр треугольника под именем X(181).
- Окружность Аполлония касается трех вневписанных окружностей вне треугольника внутренним образом (см. зеленую окружность на рисунке).
Окружность Аполлония
Определение окружности Аполлония
- Пусть дан треугольник ABC. Пусть вневписанные окружности треугольника ABC, противоположные вершинам A, B и C, есть соответственно EA, EB, EC (см. рисунок). Тогда окружность Аполлония E (на рис. справа показана зеленым цветом) касается внутренним образом сразу трех вневписанных окружностей треугольника ABC в точках соответственно EA, EB и EC (см. рисунок)[4].
- Решением упомянутой выше частной задачи Аполлония является указанная окружность E, касающаяся трех данных окружностей EA, EB и EC внешним образом.
Радиус окружности Аполлония
Радиус окружности Аполлония равен , где r — радиус вписанной окружности и s — полупериметр треугольника.[5]
Определение точки Аполлония Ap
- Точка Аполлония Ap или X(181) определяется следующим образом:
Пусть A' , B' и C' есть точки касания окружности Аполлония E с соответствтвующими вневписанными окружностями. Тогда прямые AA' , BB' и CC' пересекаются в одной точке Ap, которую называют точкой Аполлония треугольника ABC.
Замечание
На рисунке указанная точка Аполлония Ap изображена, как точка пересечения трех перпендикуляров к сторонам треугольника ABC, опущенных из точек касаний A' , B' и C' с соответсвующими вневписанными окружностями треугольника ABC, образованного совместными попарными касательными линиями трех упомянутых выше окружностей EA, EB и EC. Хотя эта точка Ap лежит в точке пересечения трех отрезков AA' , BB' и CC' , но они не перпендикулярны сторонам треугольника. Действительно, её проекции на стороны треугольника ABC являются вершинами равностороннего треугольника, а перпендикуляры к сторонам треугольника пересекаются в его ортоцентре. Проекции ортоцентра на стороны треугольника не являются вершинами равностороннего треугольника. Ортоцентр и точка Аполлония Ap совпадают только у равностороннего треугольника. У других треугольников они не совпадают.
Трилинейные координаты
Трилинейные координаты точки Аполлония Ap:
- ( a ( b + c )2 / ( b + c − a ) : b ( c + a )2 / ( c + a − b ) : c ( a + b )2 / ( a + b − c )
- =( ( sin A cos ( B/2 − C/2 ) )2 : ( sin B cos (C/2 − A/2) )2 : ( sin C cos (A/2 − B/2) )2 )
См. также
- Аполлоний Пергский
- Геометрия треугольника
- Замечательные точки треугольника
- Задача Аполлония
- Изодинамические центры = Isodynamic point (англ.)
- Окружность Аполлония
- Окружность Парри
- Теорема Аполлония
- Точки Торричелли
- Точка Ферма
- Треугольник
- Отрезки и окружности, связанные с треугольником
Примечания
- ↑ Katarzyna Wilczek (2010). "The harmonic center of a trilateral and the Apollonius point of a triangle". Journal of Mathematics and Applications. 32: 95—101.
- ↑ Kimberling, Clark Apollonius Point . Дата обращения: 16 мая 2012.
- ↑ C. Kimberling; Shiko Iwata; Hidetosi Fukagawa (1987). "Problem 1091 and Solution". Crux Mathematicorum. 13: 217—218.
- ↑ Darij Grinberg, Paul Yiu. The Apollonius Circle as a Tucker Circle // Forum Geometricorum. — 2002. — Вып. 2. — С. 175-182.
- ↑ Milorad R. Stevanovi´c. The Apollonius circle and related triangle centers // Forum Geometricorum. — 2003. — Вып. 3. — С. 187-195..
Ссылки
- Moon, Tarik Adnan (2010), "The Apollonian circles and isodynamic points" (PDF), Mathematical Reflections (6).