Водородный показатель: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 67: Строка 67:
|-
|-
| [[Кровь]] || 7,36–7,44
| [[Кровь]] || 7,36–7,44
|-
| [[Сперма]] || 7,2–8,0
|-
|-
| [[Морская вода]] || 8,0
| [[Морская вода]] || 8,0

Версия от 18:49, 4 июня 2016

Водоро́дный показа́тель, pH (лат. pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в очень разбавленных растворах она эквивалентна концентрации) ионов водорода в растворе, количественно выражающая его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, выраженной в молях на один литр:

История

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni — сила водорода, или pondus hydrogeni — вес водорода. Вообще в химии сочетанием pX принято обозначать величину, равную −lg X, а буква H в данном случае обозначает концентрацию ионов водорода (H+), или, точнее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH

Вывод значения pH

В чистой воде при 22 °C концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH]) одинаковы и составляют 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH] и составляет 10−14 моль²/л² (при 25 °C).

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH] говорят, что раствор является кислотным, а при [OH] > [H+] — основным.

Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентраций ионов водорода пользуются их десятичным логарифмом, взятым с обратным знаком, который собственно и является водородным показателем — pH.

pOH

Несколько меньшее распространение получила обратная pH величина — показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:

как в любом водном растворе при 25 °C , очевидно, что при этой температуре:

Значения pH в растворах различной кислотности

  • Вопреки распространённому мнению, pH может изменяться не только в интервале от 0 до 14, а может и выходить за эти пределы. Например, при концентрации ионов водорода [H+] = 10−15 моль /л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH = −1.
Некоторые значения pH[источник не указан 3364 дня]
Вещество pH
Электролит в свинцовых аккумуляторах <1,0
Желудочный сок 1,0–2,0
Лимонный сок (5 % р-р лимонной кислоты) 2,0±0,3
Пищевой уксус 2,4
Кока-кола 3,0±0,3
Яблочный сок 3,0
Пиво 4,5
Кофе 5,0
Шампунь 5,5
Чай 5,5
Кожа здорового человека 5,5
Кислотный дождь < 5,6
Питьевая вода 6,5–8,5
Слюна 6,8–7,4 [1]
Молоко 6,6–6,93
Чистая вода при 25 °C 7,0
Кровь 7,36–7,44
Сперма 7,2–8,0
Морская вода 8,0
Мыло (жировое) для рук 9,0–10,0
Нашатырный спирт 11,5
Отбеливатель (хлорная известь) 12,5
Концентрированные растворы щелочей >13

Так как при 25 °C (стандартных условиях) [H+] · [OH] = 10−14, то понятно, что при этой температуре pH + pOH = 14.

Так как в кислотных растворах [H+] > 10−7, то у кислотных растворов pH < 7, аналогично, у основных растворов pH > 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH < 7 (что соответствует одновременно возросшим концентрациям как H+, так и OH); при понижении температуры, напротив, нейтральная pH возрастает.

Методы определения значения pH

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

  1. Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1–2 единицы.
  2. Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислотной области в основную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.
  3. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H+ в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне рН, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.
  4. Аналитический объёмный метод — кислотно-основное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.
  5. Влияние температуры на значения pH

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3 [источник не указан 3186 дней]

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83 [источник не указан 3186 дней]

Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H+) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред.

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.

В человеческом организме в различных органах водородный показатель различен.

См. также

Примечания

  1. Кислотность (рН) // Функциональная гастроэнтерология : сайт. Архивировано 21 марта 2013 года.

Литература

Ссылки