Неравенство Маркова: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Формулировка: убрал модуль неотрицательной величины и добавил эквивалентность неравенств Чебышева и Маркова
Строка 10: Строка 10:
:<math>\mathbb{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\textrm{Var}(X)}{a^2}.</math>
:<math>\mathbb{P}(|X-\mathbb{E}(X)| \geq a) \leq \frac{\textrm{Var}(X)}{a^2}.</math>


И наоборот, представив неотрицательную случайную величину <math>X</math> в виде квадрата другой случайной величины <math>X=Y^2</math>, можно из неравенства Чебышева для <math>Y</math> получить неравенство Маркова для <math>X</math>.
И наоборот, представив неотрицательную случайную величину <math>X</math> в виде квадрата другой случайной величины <math>X=Y^2</math>, такой что <math>\mathbb{E}Y=0</math>, из неравенства Чебышева для <math>Y</math> получим неравенство Маркова для <math>X</math>. Подходящая случайная величина <math>Y</math> определяется так: <math>\mathbb{P}(Y< -\sqrt a) = \mathbb{P}(Y> \sqrt a) = \mathbb{P}(X> a)/2</math>, <math>\mathbb{P}(Y=0) = \mathbb{P}(X=0)</math>.


== Примеры ==
== Примеры ==

Версия от 13:14, 27 ноября 2016

Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.

Формулировка

Пусть неотрицательная случайная величина определена на вероятностном пространстве , и её математическое ожидание конечно. Тогда

,

где .

Если в неравенство подставить вместо случайной величины случайную величину , то получим неравенство Чебышёва:

И наоборот, представив неотрицательную случайную величину в виде квадрата другой случайной величины , такой что , из неравенства Чебышева для получим неравенство Маркова для . Подходящая случайная величина определяется так: , .

Примеры

1. Пусть — неотрицательная случайная величина. Тогда, взяв , получаем

.

2. Пусть в среднем ученики опаздывают на 3 минуты, и нас интересует, какова вероятность того, что ученик опоздает на 15 и более минут. Чтобы получить грубую оценку сверху, можно воспользоваться неравенством Маркова:

.

См. также

Ссылки