Каноническое преобразование: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Производящие функции: исправление синтаксической ошибки
Строка 26: Строка 26:
Канонические преобразования для которых <math>c = 1</math> называется ''унивалентными''. Так как при заданной производящей функции различные <math>c</math> изменяют выражения для новых координат через старые, а также для гамильтониана только на константу, то часто рассматривают только унивалентные канонические преобразования.
Канонические преобразования для которых <math>c = 1</math> называется ''унивалентными''. Так как при заданной производящей функции различные <math>c</math> изменяют выражения для новых координат через старые, а также для гамильтониана только на константу, то часто рассматривают только унивалентные канонические преобразования.


Производящая функция часто может быть выражена не через старые координаты и импульсы, а через любые две из четырёх переменных <math>p_i, q_i, Q_i, P_i</math>, причём выбор независим для каждого <math>i = 1, \cdots, s</math>. Удобным оказывается выразить её так, чтобы для каждого <math>i</math> одна переменная была новой, а другая старой. Существует лемма утверждающая, что это можно сделать всегда. Дифференциал функции <math>F</math> имеет явный вид полного дифференциала в том случае, когда она выражена через старые и новые координаты <math>F = F(q,p(q,Q,t),t) = F_1(q,Q,t)</math>. При использовании других пар координат удобно перейти к функциям, дифференциал которых будет иметь явный вид полного дифференциала для соответствующих переменных. Для этого нужно сделать [[Преобразование Лежандра|преобразования Лежандра]] исходной функции <math>F</math>. Полученные функции называют ''производящими функциями'' канонического преобразования в соответствующих координатах. В случае когда выбор координат одинаков для всех <math>i</math> возможны четыре варианта выбора переменных, соответствующие функции принято обозначать номерами:
Производящая функция часто может быть выражена не через старые координаты и импульсы, а через любые две из четырёх переменных <math>p_i, q_i, Q_i, P_i</math>, причём выбор независим для каждого <math>i = 1, \cdots, s</math>. Удобным оказывается выразить её так, чтобы для каждого <math>i</math> одна переменная была новой, а другая старой. Существует лемма, утверждающая, что это можно сделать всегда. Дифференциал функции <math>F</math> имеет явный вид полного дифференциала в том случае, когда она выражена через старые и новые координаты <math>F = F(q,p(q,Q,t),t) = F_1(q,Q,t)</math>. При использовании других пар координат удобно перейти к функциям, дифференциал которых будет иметь явный вид полного дифференциала для соответствующих переменных. Для этого нужно сделать [[Преобразование Лежандра|преобразования Лежандра]] исходной функции <math>F</math>. Полученные функции называют ''производящими функциями'' канонического преобразования в соответствующих координатах. В случае когда выбор координат одинаков для всех <math>i</math> возможны четыре варианта выбора переменных, соответствующие функции принято обозначать номерами:
: <math>F_1(q,Q,t), \; F_2(q,P,t), \; F_3(p,Q,t), \; F_4(p,P,t),</math>
: <math>F_1(q,Q,t), \; F_2(q,P,t), \; F_3(p,Q,t), \; F_4(p,P,t),</math>
где для простоты введены векторы старых координат и импульсов <math>q = (q_1,\cdots, q_2)</math> <math>p = (p_1,\cdots, p_2)</math>, , аналогично и для новых координат и импульсов. О таких производящих функциях говорят как о производящих функциях 1-го, 2-го, 3-го или 4-го типа соответственно.
где для простоты введены векторы старых координат и импульсов <math>q = (q_1,\cdots, q_2)</math> <math>p = (p_1,\cdots, p_2)</math>, , аналогично и для новых координат и импульсов. О таких производящих функциях говорят как о производящих функциях 1-го, 2-го, 3-го или 4-го типа соответственно.

Версия от 21:10, 1 декабря 2016

В гамильтоновой механике каноническое преобразование (также контактные преобразования) — это преобразование канонических переменных и гамильтониана не меняющие общий вид уравнений Гамильтона для любой гамильтоновой системы. Канонические преобразования могут быть введены и в квантовом случае как не меняющие вид уравнений Гейзенберга. Они позволяют свести задачу с определённым гамильтонианом к задаче с более простым гамильтонианом как в классическом, так и в квантовом случае. Канонические преобразования образуют группу.

Определение

Преобразования

, где  — число степеней свободы,

называются каноническими, если это преобразование переводит уравнения Гамильтона с функцией Гамильтона :

в уравнения Гамильтона с функцией Гамильтона :

Переменные и называются новыми координатами и импульсами, соответственно, а и  — старыми координатами и импульсами.

Производящие функции

Из инвариантности интеграла Пуанкаре-Картана и теореме Ли Хуа-чжуна о его единственности можно получить:

где постоянную называют валентностью канонического преобразования,  — полный дифференциал некоторой функции (предполагается, что и также выражены через старые переменные). Она называется производящей функцией канонического преобразования. Канонические преобразования взаимнооднозначно определяются производящей функцией и валентностью.

Канонические преобразования для которых называется унивалентными. Так как при заданной производящей функции различные изменяют выражения для новых координат через старые, а также для гамильтониана только на константу, то часто рассматривают только унивалентные канонические преобразования.

Производящая функция часто может быть выражена не через старые координаты и импульсы, а через любые две из четырёх переменных , причём выбор независим для каждого . Удобным оказывается выразить её так, чтобы для каждого одна переменная была новой, а другая старой. Существует лемма, утверждающая, что это можно сделать всегда. Дифференциал функции имеет явный вид полного дифференциала в том случае, когда она выражена через старые и новые координаты . При использовании других пар координат удобно перейти к функциям, дифференциал которых будет иметь явный вид полного дифференциала для соответствующих переменных. Для этого нужно сделать преобразования Лежандра исходной функции . Полученные функции называют производящими функциями канонического преобразования в соответствующих координатах. В случае когда выбор координат одинаков для всех возможны четыре варианта выбора переменных, соответствующие функции принято обозначать номерами:

где для простоты введены векторы старых координат и импульсов , , аналогично и для новых координат и импульсов. О таких производящих функциях говорят как о производящих функциях 1-го, 2-го, 3-го или 4-го типа соответственно.

Производящая функция 1-го типа

Пусть  — произвольная невырожденная функция старых координат, новых координат и времени:

кроме того, задано некоторое число , тогда пара задаёт каноническое преобразование по правилу

Связь с исходной производящей функцией:

Каноническое преобразование может быть получено с помощью такой функции, если не равен нулю якобиан:

Канонические преобразования, дополненные этим условием называют свободными.

Производящая функция 2-го типа

Пусть  — произвольная невырожденная функция старых координат, новых импульсов и времени:

кроме того, задано некоторое число , тогда пара задаёт каноническое преобразование по правилу

Связь с исходной производящей функцией:

Каноническое преобразование может быть получено с помощью такой функции, если не равен нулю якобиан:


Производящая функция 3-го типа

Пусть  — произвольная невырожденная функция старых координат, новых координат и времени:

кроме того, задано некоторое число , тогда пара задаёт каноническое преобразование по правилу

Связь с исходной производящей функцией:

Каноническое преобразование может быть получено с помощью такой функции, если не равен нулю якобиан:


Производящая функция 4-го типа

Пусть  — произвольная невырожденная функция старых координат, новых координат и времени:

кроме того, задано некоторое число , тогда пара задаёт каноническое преобразование по правилу

Связь с исходной производящей функцией:

Каноническое преобразование может быть получено с помощью такой функции, если не равен нулю якобиан:

Примеры

1. Тождественное преобразование

может быть получено при:

2. Если задать

то полученное преобразование будет иметь вид:

Таким образом, разделение канонических переменных на координаты и импульсы с математической точки зрения является условным.

3. Преобразование инверсии

может быть получено при:

4. Точечные преобразования (преобразования при которых новые координаты выражаются только через старые координаты и время, но не старые импульсы.)

Они всегда могут быть заданы с помощью:

тогда

В частности, если

где  — ортогональная матрица:

то

К точечным преобразования приводит и функция:

тогда

В частности функция

задаёт переход от декартовых координат к цилиндрическим.

5. Линейные преобразования переменных системы с одной степенью свободы:

является унивалентным каноническим преобразованием при

производящая функция:

Такие преобразования образуют специальную линейную группу .

Действие как производящая функция

Действие, выраженное как функция координат и импульсов конечной точки

задаёт каноническое преобразование гамильтоновой системы.

Скобки Пуассона и Лагранжа

Необходимое и достаточное условие каноничности преобразований может быть записано с помощью скобок Пуассона:

Кроме того, необходимым и достаточным условием каноничности преобразования является выполнение для произвольных функций и условия:

где под и понимаются скобки Пуассона по старым и новым координатам соответственно.

В случае унивалентных канонических преобразований:

и говорят, что скобки Пуассона инвариантны относительно таких преобразований. Иногда канонические преобразования так определяют (при этом каноническими преобразованиями считают только унивалентные).

Аналогично, необходимое и достаточное условие каноничности преобразований может быть записано с помощью скобок Лагранжа:

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М.: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5.
    Книга в электронной библиотеке мехмата МГУ
  • Ландау Л. Д., Лифшиц E. M. §46. Канонические преобразования. Глава VII. Канонические уравнения. // Механика. — 5-е изд., стереотипное. — М.: ФИЗМАТЛИТ, 2004. — 224 с. — 3000 экз. — ISBN 5-9221-0055-6. Книга в электронной библиотеке мехмата МГУ
  • Гантмахер Ф. Р.  Лекции по аналитической механике. 3-е изд. — М.: Физматлит, 2005. — 264 с. — ISBN 5-9221-0067-X..
  • Ольховский И. И.  Курс теоретической механики для физиков. 4-е изд. — СПб.: Лань, 2009. — 576 с. — ISBN 978-5-8114-0857-3..