Гидратация цемента: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Строка 4: Строка 4:
== Химические реакции ==
== Химические реакции ==
[[Файл:Rate of hydration of clinker minerals.svg|thumb|Скорость гидратации клинкерных минералов.{{-1|<ref name=Невилль13 />}}]]
[[Файл:Rate of hydration of clinker minerals.svg|thumb|Скорость гидратации клинкерных минералов.{{-1|<ref name=Невилль13 />}}]]
Безводные минералы [[Цементный клинкер|клинкера]] при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция. Все реакции являются [[Экзотермические реакции|экзотермическими]], то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок.{{-1|<ref name=РК34 />}} Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет.{{-1|<ref name=РК40 />}}{{ref+|При анализах «[[Римский бетон|римского бетона]]» в нём находились гидравлические составляющие, которые через 200 лет ещё не подверглись 100%-ной гидратации.{{-1|<ref name=РК40 />}}|group=~}} Степень гидратации определяется различными способами: по количеству Ca(OH)<sub>2</sub>, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента,{{-1|{{ref+|С помощью [[Рентгеноструктурный анализ|рентгеноструктурного анализа]].|group=~}}}} либо косвенно по показателям прочности цементного камня.{{-1|<ref name=Невилль12 />}} Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция.{{-1|<ref name=РК40 />}} В процессе гидратации клинкеров C<sub>3</sub>S и C<sub>2</sub>S помимо гидросиликатов кальция образуется [[гашёная известь]] Ca(OH)<sub>2</sub>, сохраняющаяся в цементном камне и препятствующая [[Коррозия|коррозии]] стали внутри цементного камня.{{-1|<ref name=РК38 />}}
Безводные минералы [[Цементный клинкер|клинкера]] при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция. Все реакции являются [[Экзотермические реакции|экзотермическими]], то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок.{{-1|<ref name=РК34 />}} Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет.{{-1|<ref name=РК40 />}}{{ref+|При анализах «[[Римский бетон|римского бетона]]» в нём находились гидравлические составляющие, которые через 200 лет ещё не подверглись 100%-ной гидратации.{{-1|<ref name=РК40 />}}|group=~}} Степень гидратации определяется различными способами: по количеству Ca(OH)<sub>2</sub>, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента,{{-1|{{ref+|С помощью [[Рентгеноструктурный анализ|рентгеноструктурного анализа]].|group=~}}}} либо косвенно по показателям прочности цементного камня.{{-1|<ref name=Невилль12 />}} Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция.{{-1|<ref name=РК40 />}} В процессе гидратации клинкеров C<sub>3</sub>S и C<sub>2</sub>S помимо гидросиликатов кальция образуется [[гашёная известь]] Ca(OH)<sub>2</sub>, сохраняющаяся в цементном камне и препятствующая [[Коррозия|коррозии]] [[Сталь|стали]] внутри цементного камня.{{-1|<ref name=РК38 />}}


Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом<ref name=РК37 />:
Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом<ref name=РК37 />:

Версия от 19:40, 17 декабря 2016

Гидратация трёхкальциевого силиката с образованием иглообразных кристаллов гидросиликата кальция (выделены сиреневым цветом). Время гидратации — 5 часов. Водоцементное отношение — 0,4. Зелёным цветом выделен частично растворённый субстрат трёхкальциевого силиката.Шаблон:-1

Гидратация цемента — химическая реакция цемента с водой с образованием кристаллогидратов.Шаблон:-1 В процессе гидратации жидкий или пластичный цементный клей превращается в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, вторая — упрочнением, или твердением.Шаблон:-1

Химические реакции

Скорость гидратации клинкерных минералов.Шаблон:-1

Безводные минералы клинкера при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция. Все реакции являются экзотермическими, то есть протекают с выделением теплоты. На скорость гидратации влияют: степень помола цемента и его минеральный состав, количество воды, которой замешивается цемент, температура, введение добавок.Шаблон:-1 Степень гидратации зависит от водоцементного соотношения, и достигает своего максимального значения только через 1—5 лет.Шаблон:-1[~ 1] Степень гидратации определяется различными способами: по количеству Ca(OH)2, по тепловыделению, по удельному весу цементного теста, по количеству химически связанной воды, по количеству негидратированного цемента,Шаблон:-1 либо косвенно по показателям прочности цементного камня.Шаблон:-1 Продукты гидратации различаются по прочности. Основными носителями прочности являются гидросиликаты кальция.Шаблон:-1 В процессе гидратации клинкеров C3S и C2S помимо гидросиликатов кальция образуется гашёная известь Ca(OH)2, сохраняющаяся в цементном камне и препятствующая коррозии стали внутри цементного камня.Шаблон:-1

Уравнения реакций для четырёх основных клинкерных минералов выглядят следующим образом[1]:

Для трёхкальциевого силиката (сокращённо ):

Дж/г

Для двукальциевого силиката (сокращённо ):

Дж/г

Для трехкальциевого алюмината (сокращённо ):

Дж/г

Для четырёхкальциевого алюмоферрита (сокращённо ):

Дж/г

Изменения физических свойств

Схема объёмных соотношений в цементном геле в зависимости от величины водоцементного отношения и степени гидратации. Цифрами обозначены: 1 — Негидратированный цемент. 2 — Объём твёрдой фазы. 3 — Объём гелевых пор. 4 — Объём усадочных пор. 5 — Объём капиллярных пор.Шаблон:-1

При смешивании цемента и воды цементные частицы окружаются водой, которая составляет 50—70 объёмных процентов смеси. В результате химической реакции гидратации начинается образование иглообразных кристаллов. Спустя 6 часов образуется достаточное количество кристаллов и между цементными частицами формируются пространственные связи. Так происходит загустевание (схватывание) цементной смеси.Шаблон:-1 Процесс схватывания, вероятно, обеспечивается избирательной гидратацией клинкерных минералов C3A и C3S, а также развитием оболочек вокруг цементных зёрен и взаимной коагуляцией составных частей цементного теста.Шаблон:-1 Через 8—10 часов объём цементной смеси заполняет скелет иглообразных кристаллов, образованный преимущественно продуктами гидратации алюминатов C3A, поэтому такая структура называется алюминатной. С этого момента начинается застывание и набор прочности, которые связаны с формированием силикатной структуры, образующейся в процессе гидратации клинкерных минералов C3S и C2S. Результатом реакции силикатов и воды становятся очень малые кристаллы, объединяющиеся в гомогенную тонкопористую структуру, которая и определяет итоговую прочность цементного камня. Примерно через сутки силикатная структура начинает вытеснять алюминатную, а спустя 28 суток — полностью вытесняет её.Шаблон:-1 На практике формирование рыхлой алюминатной структуры из гидросиликата кальция в процессе схватывания отрицательно влияет на прочностные характеристики цементного камня. Поэтому в цементный клинкер вводится гипс, количество которого ограничивается допустимой концентрацией ангидрида серной кислоты SO3 в ценменте по весу.Шаблон:-1 Гипсовая добавка замедляет образование гидроалюмината кальция и каркас гидратированного цементного теста формируется за счёт гидросиликата кальция.Шаблон:-1

Гидратация цемента в период схватывания характеризуется выделением теплоты: в начале схватывания происходит быстрый подъём температуры, а в конце схватывания наблюдается температурный максимум. Скорость схватывания находится в зависимости от температуры окружающей среды. При низких температурах схватывание замедляется. При повышении температуры скорость схватывания увеличивается, однако при значениях температуры выше 30° C может наблюдаться обратный эффект.Шаблон:-1

Для полной гидратации цементного зерна необходимо количество воды, составляющее 40 % от его массы. При этом из указанного количества воды 60 % (или 25 % от массы цемента) будут химически связаны с цементом, а 40 % (или 15 % от массы цемента) останутся в порах геля.Шаблон:-1 Средняя величина удельного веса продуктов гидратации в насыщенном водой состоянии составляет 2,16.Шаблон:-1 Та часть воды (25 % от массы цемента), которая вступает в химическую реакцию с цементом, претерпевает объёмную контракцию (сжатие) в процессе реакции, составляющую примерно 25 % от её объёма. В итоге образующийся цементный камень частично уменьшается в объёме. Этот процесс называется усадкой, а величина уменьшения объёма — объёмом усадки.Шаблон:-1

Упрощённая модель структуры цементного камня. Крупные чёрные точки — гелевые частицы, промежутки между ними — гелевые поры (величина которых преувеличена для наглядности), пространства окрашенные в голубой цвет — капиллярные пустоты.Шаблон:-1

При полной гидратации цементного клея объём пор будет составлять примерно 28[2]—30[3] % от объёма образующейся структуры геля. При этом величина пористости геля в основном не зависит от водоцементного отношения смеси и степени гидратации, а является характерным показателем для марки цемента.Шаблон:-1 Размер гелевых пор составляет примерно 1,5—2[2] (1—3[4]) нм в диаметре.Шаблон:-1 Часть общего объёма цементного теста, которая не заполнена продуктами гидратации, образует взаимосвязанную систему капиллярных пор, беспорядочно распределённых по всему цементному камню. Капиллярная пористость цементного камня находится в прямой зависимости от водоцементного отношения смеси и в обратной зависимости от степени гидратации. Чем больше величина водоцементного отношения, тем больше капиллярных пор. В то же время по мере роста степени гидратации цемента будет уменьшаться объём капиллярных пор. Размер капиллярных пор составляет примерно 1,27 мкм.Шаблон:-1

Структурно продукты гидратаци представляет собой гель, а сам процесс гидратации классифицируется как гелеобразование.Шаблон:-1 В процессе гидратации значительно увеличивается площадь поверхности твёрдой фазы цементного геля, что влечёт за собой повышение адсорбции свободной воды. При этом сохраняется расход воды в реакциях гидратации. Следствием этих двух процессов становится самовысушивание — явление уменьшения относительной влажности в цементном тесте. Самовысушивание снижает степень гидратации, поэтому для нормального протекания процессов твердения цементного теста необходимо поддерживать уровень влажности, как одно из условий нормального набора прочности. Процесс самовысушивания также компенсируется избытком воды при затворении цементной смеси (при значениях водоцементного отношения 0,5 и более).Шаблон:-1

Примечания

Комментарии
  1. При анализах «римского бетона» в нём находились гидравлические составляющие, которые через 200 лет ещё не подверглись 100%-ной гидратации.Шаблон:-1
Источники
  1. Райхель, Конрад, 1979, с. 37.
  2. 1 2 Невилль, 1972, с. 25.
  3. Райхель, Конрад, 1979, с. 35.
  4. Dr. James J. Beaudoin. On the Validity of Colloidal Models for Hydrated Cement Paste (англ.). Дата обращения: 15 декабря 2016.

Ошибка в сносках?: Тег <ref> с именем «Невилль12», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль13», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль16», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль19», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль19-20», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль20», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль24», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Невилль26», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «РК33», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «РК34», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «РК36», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «РК38», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «РК40», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Артюхович107», определённый в <references>, не используется в предшествующем тексте.
Ошибка в сносках?: Тег <ref> с именем «Шевченко25», определённый в <references>, не используется в предшествующем тексте.

Ошибка в сносках?: Тег <ref> с именем «cementlab2», определённый в <references>, не используется в предшествующем тексте.

Литература

  • Невилль А. М. Свойства бетона / Сокращённый перевод с английского канд. техн. наук В. Д. Парфёнова и Т. Ю. Якуб. — Москва: Издательство литературы по строительству, 1972. — 344 с.
  • Райхель В., Конрад Д. Бетон: В 2-х ч. Ч. 1. Свойства. Проектирование. Испытание / Пер. с нем./Под ред. В. Б. Ратинова. — Москва: Стройиздат, 1979. — 111 с.
  • Строительство: Энциклопедический словарь / Автор-составитель Д. В. Артюхович. — Ставрополь: Ставропольское издательство «Параграф», 2011. — 766 с. — ISBN 978-5-904939-17-5.
  • Шевченко А. А. Химическое сопротивление неметаллических материалов и защита от коррозии: учебное пособие для вузов. — Москва: Химия, Колосс, 2004. — 248 с. — ISBN 5-98109-008-1.

Ссылки

Тематическая подборка иллюстраций (англ.), полученных с помощью растрового электронного микроскопа