Трансформатор тока: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Небольшая опечатка |
Maynich (обсуждение | вклад) м оформление - нет секции примечаний |
||
Строка 20: | Строка 20: | ||
== Схемы подключения измерительных трансформаторов тока == |
== Схемы подключения измерительных трансформаторов тока == |
||
[[Файл:Current_transformer.JPG|thumb|200px|Два трансформатора тока в ячейке КРУ-10 кВ]] |
[[Файл:Current_transformer.JPG|thumb|200px|Два трансформатора тока в ячейке КРУ-10 кВ]] |
||
[[Файл:Current transformer connections.png|550px]]<br |
[[Файл:Current transformer connections.png|550px]]<br>Трансформаторы тока обозначаются ТАа, ТАс, или ТА1 , ТА2, а токовые реле КА1, КА2. |
||
В [[Трёхфазная система электроснабжения|трёхфазных сетях]] с [[Нейтральный_провод#Изолированная нейтраль|изолированной нейтралью]] (сети с напряжением 6-10-35 кВ) трансформаторы тока нередко устанавливаются только на двух фазах (обычно фазы A и C). Это связано с отсутствием нулевого провода в сетях 6 —35 кВ и информация о токе в фазе с отсутствующим трансформатором тока может быть легко получена измерением тока в двух фазах. В сетях с [[Нейтральный_провод#Глухозаземлённая нейтраль|глухозаземлённой нейтралью]] (сети до 1000В) или [[эффективно заземлённая нейтраль|эффективно заземлённой нейтралью]] (сети напряжением 110 кВ и выше) трансформаторы тока в обязательном порядке устанавливаются во всех трёх фазах. |
В [[Трёхфазная система электроснабжения|трёхфазных сетях]] с [[Нейтральный_провод#Изолированная нейтраль|изолированной нейтралью]] (сети с напряжением 6-10-35 кВ) трансформаторы тока нередко устанавливаются только на двух фазах (обычно фазы A и C). Это связано с отсутствием нулевого провода в сетях 6 —35 кВ и информация о токе в фазе с отсутствующим трансформатором тока может быть легко получена измерением тока в двух фазах. В сетях с [[Нейтральный_провод#Глухозаземлённая нейтраль|глухозаземлённой нейтралью]] (сети до 1000В) или [[эффективно заземлённая нейтраль|эффективно заземлённой нейтралью]] (сети напряжением 110 кВ и выше) трансформаторы тока в обязательном порядке устанавливаются во всех трёх фазах. |
||
В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются по схеме «Звезда» (рис.1), в случае двух фаз — «Неполная звезда» (рис.2). Для дифференциальных защит силовых трансформаторов с электромеханическими реле трансформаторы подключают по схеме «Треугольник» (для защиты обмотки трансформатора, соединённой в звезду при соединении защищаемого трансформатора «треугольник — звезда», что необходимо для компенсации сдвига фаз вторичных токов с целью уменьшения тока небаланса). Для экономии измерительных органов в цепях защиты иногда применяется схема «На разность фаз токов» (не должна применяться для защиты от коротких замыканий за силовыми трансформаторами с соединением треугольник — звезда). |
В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются по схеме «Звезда» (рис.1), в случае двух фаз — «Неполная звезда» (рис.2). Для дифференциальных защит силовых трансформаторов с электромеханическими реле трансформаторы подключают по схеме «Треугольник» (для защиты обмотки трансформатора, соединённой в звезду при соединении защищаемого трансформатора «треугольник — звезда», что необходимо для компенсации сдвига фаз вторичных токов с целью уменьшения тока небаланса). Для экономии измерительных органов в цепях защиты иногда применяется схема «На разность фаз токов» (не должна применяться для защиты от коротких замыканий за силовыми трансформаторами с соединением треугольник — звезда). |
||
== Классификация трансформаторов тока |
== Классификация трансформаторов тока == |
||
Трансформаторы тока классифицируются по различным признакам: |
Трансформаторы тока классифицируются по различным признакам: |
||
Строка 83: | Строка 83: | ||
=== Класс точности === |
=== Класс точности === |
||
Для определения класса точности трансформатора тока вводятся понятия: |
Для определения класса точности трансформатора тока вводятся понятия: |
||
* погрешности по току ΔI = I<sub>2</sub> − I’<sub>1</sub>, где I<sub>2</sub> |
* погрешности по току ΔI = I<sub>2</sub> − I’<sub>1</sub>, где I<sub>2</sub> — действительный вторичный ток, I’<sub>1</sub> = I<sub>1</sub>/n — приведённый первичный ток, I<sub>1</sub> — первичный ток, n — коэффициент трансформатора тока; |
||
* погрешности по углу δ = α<sub>1</sub> |
* погрешности по углу δ = α<sub>1</sub> − α<sub>2</sub>, где α<sub>1</sub> — теоретический угол сдвига фаз между первичным и вторичным токами α<sub>1</sub> = 180°, α<sub>2</sub> — действительный угол между первичным и вторичным током; |
||
* относительной полной погрешности ε% = (|I’<sub>1</sub> − I<sub>2</sub>|) / |I’<sub>1</sub>|, где |I’<sub>1</sub>| — модуль комплексного приведённого тока. |
* относительной полной погрешности ε% = (|I’<sub>1</sub> − I<sub>2</sub>|) / |I’<sub>1</sub>|, где |I’<sub>1</sub>| — модуль комплексного приведённого тока. |
||
Погрешности по току и углу объясняются действием тока намагничивания. |
Погрешности по току и углу объясняются действием тока намагничивания. |
||
Строка 96: | Строка 96: | ||
Отечественные трансформаторы тока имеют следующее обозначения: |
Отечественные трансформаторы тока имеют следующее обозначения: |
||
* первая буква в обозначении «Т» — трансформатор тока |
* первая буква в обозначении «Т» — трансформатор тока |
||
* вторая буква |
* вторая буква — разновидность конструкции: «П» — проходной, «О» — опорный, «Ш» — шинный, «Ф» — в фарфоровой покрышке |
||
* третья буква |
* третья буква —материал изоляции: «М» — масляная, «Л» — литая изоляция, «Г» — газовая ([[гексафторид серы|элегаз]]). |
||
Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки |
Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки |
||
Строка 116: | Строка 116: | ||
* {{Книга|автор=Афанасьев В. В. и др.|название=Трансформаторы тока|место=Л.|издательство=Энергоатомиздат|год=1989}} |
* {{Книга|автор=Афанасьев В. В. и др.|название=Трансформаторы тока|место=Л.|издательство=Энергоатомиздат|год=1989}} |
||
* {{Книга|автор=Чернобровов Н. В.|название=Релейная защита|место=М.|издательство=Энергия|год=1974}} |
* {{Книга|автор=Чернобровов Н. В.|название=Релейная защита|место=М.|издательство=Энергия|год=1974}} |
||
== Примечания == |
|||
{{примечания}} |
|||
== Ссылки == |
== Ссылки == |
Версия от 13:44, 18 января 2017
Трансформа́тор то́ка — трансформатор, первичная обмотка которого подключена к источнику тока, а вторичная обмотка замыкается на измерительные или защитные приборы, имеющие малые внутренние сопротивления.
Измерительный трансформа́тор то́ка — трансформатор, предназначенный для преобразования тока до значения, удобного для измерения. Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную включаются измерительные приборы. Ток, протекающий по вторичной обмотке трансформатора тока, пропорционален току, протекающему в его первичной обмотке.
Трансформаторы тока широко используются для измерения электрического тока и в устройствах релейной защиты электроэнергетических систем, в связи с чем на них накладываются высокие требования по точности. Трансформаторы тока обеспечивают безопасность измерений, изолируя измерительные цепи от первичной цепи с высоким напряжением, часто составляющим сотни киловольт.
К трансформаторам тока предъявляются высокие требования по точности. Как правило, трансформатор тока выполняют с двумя и более группами вторичных обмоток: одна используется для подключения устройств защиты, другая, более точная — для подключения средств учёта и измерения (например, электрических счётчиков).
Особенности конструкции
Вторичные обмотки трансформатора тока (не менее одной на каждый магнитопровод) обязательно нагружаются. Сопротивление нагрузки строго регламентировано требованиями к точности коэффициента трансформации. Незначительное отклонение сопротивления вторичной цепи от номинала (указанного на табличке) по модулю полного Z или cos φ (обычно cos φ = 0,8 индукт.) приводит к изменению погрешности преобразования и возможно ухудшению измерительных качеств трансформатора. Значительное увеличение сопротивления нагрузки создает высокое напряжение во вторичной обмотке, достаточное для пробоя изоляции трансформатора, что приводит к выходу трансформатора из строя, а также создаёт угрозу жизни обслуживающего персонала. Кроме того, из-за возрастающих потерь в сердечнике магнитопровода, трансформатор начинает перегреваться, что также может привести к повреждению (или, как минимум, к износу) изоляции и дальнейшему её пробою. Полностью разомкнутая вторичная обмотка ТТ не создаёт компенсирующего магнитного потока в сердечнике, что приводит к перегреву магнитопровода и его выгоранию. При этом магнитный поток, созданный первичной обмоткой имеет очень высокое значение и потери в магнитопроводе сильно нагревают его. В конструктивном отношении трансформаторы тока выполнены в виде сердечника, шихтованного из холоднокатанной кремнистой трансформаторной стали, на которую наматываются одна или несколько вторичных изолированных обмоток. Первичная обмотка также может быть выполнена в виде катушки, намотанной на сердечник, либо в виде шины. В некоторых конструкциях вообще не предусмотрена встроенная первичная обмотка; первичная обмотка выполняется потребителем путём пропускания провода через специальное окно. Обмотки и сердечник заключаются в корпус для изоляции и предохранения обмоток. В некоторых современных конструкциях трансформаторов тока сердечник выполняется из нанокристаллических (аморфных) сплавов, для расширения диапазона, в котором трансформатор работает в классе точности.
Коэффициент трансформации измерительных трансформаторов тока является их основной характеристикой. Номинальный (идеальный) коэффициент указывается на шильдике трансформатора в виде отношения номинального тока первичной (первичных) обмоток к номинальному току вторичной (вторичных) обмоток, например, 100/5 А или 10-15-50-100/5 А (для первичных обмоток с несколькими секциями витков). При этом реальный коэффициент трансформации несколько отличается от номинального. Это отличие характеризуется величиной погрешности преобразования, состоящей из двух составляющих — синфазной и квадратурной. Первая характеризует отклонение по величине, вторая отклонение по фазе вторичного тока реального от номинального. Эти величины регламентированы ГОСТами и служат основой для присвоения трансформаторам тока классов точности при проектировании и изготовлении. Поскольку в магнитных системах имеют место потери связанные с намагничиванием и нагревом магнитопровода, вторичный ток оказывается меньше номинального (то есть погрешность отрицательная) у всех трансформаторов тока. В связи с этим для улучшения характеристик и внесения положительного смещения в погрешность преобразования применяют витковую коррекцию. А это означает, что коэффициент трансформации у таких откорректированных трансформаторов не соответствует привычной формуле соотношений витков первичной и вторичной обмоток.
Схемы подключения измерительных трансформаторов тока
Трансформаторы тока обозначаются ТАа, ТАс, или ТА1 , ТА2, а токовые реле КА1, КА2.
В трёхфазных сетях с изолированной нейтралью (сети с напряжением 6-10-35 кВ) трансформаторы тока нередко устанавливаются только на двух фазах (обычно фазы A и C). Это связано с отсутствием нулевого провода в сетях 6 —35 кВ и информация о токе в фазе с отсутствующим трансформатором тока может быть легко получена измерением тока в двух фазах. В сетях с глухозаземлённой нейтралью (сети до 1000В) или эффективно заземлённой нейтралью (сети напряжением 110 кВ и выше) трансформаторы тока в обязательном порядке устанавливаются во всех трёх фазах.
В случае установки в три фазы вторичные обмотки трансформаторов тока соединяются по схеме «Звезда» (рис.1), в случае двух фаз — «Неполная звезда» (рис.2). Для дифференциальных защит силовых трансформаторов с электромеханическими реле трансформаторы подключают по схеме «Треугольник» (для защиты обмотки трансформатора, соединённой в звезду при соединении защищаемого трансформатора «треугольник — звезда», что необходимо для компенсации сдвига фаз вторичных токов с целью уменьшения тока небаланса). Для экономии измерительных органов в цепях защиты иногда применяется схема «На разность фаз токов» (не должна применяться для защиты от коротких замыканий за силовыми трансформаторами с соединением треугольник — звезда).
Классификация трансформаторов тока
Трансформаторы тока классифицируются по различным признакам:
1. По назначению:
- измерительные;
- защитные;
- промежуточные (для включения измерительных приборов в токовые цепи релейной защиты, для выравнивания токов в схемах дифференциальных защит и т. д.);
- лабораторные (высокой точности, а также со многими коэффициентами трансформации).
2. По роду установки:
- для наружной установки (в открытых распределительных устройствах);
- для внутренней установки;
- встроенные в электрические аппараты и машины: выключатели, трансформаторы, генераторы и т. д.;
- накладные — надевающиеся сверху на проходной изолятор (например, на высоковольтный ввод силового трансформатора);
- переносные (для контрольных измерений и лабораторных испытаний).
3. По конструкции первичной обмотки:
- многовитковые (катушечные, с петлевой обмоткой и с т. н. «восьмёрочной обмоткой»);
- одновитковые (стержневые);
- шинные.
4. По способу установки:
- проходные;
- опорные.
5. По выполнению изоляции:
- с сухой изоляцией (фарфор, бакелит, литая эпоксидная изоляция и т. д.);
- с бумажно-масляной изоляцией и с конденсаторной бумажно-масляной изоляцией;
- газонаполненные (элегаз);
- с заливкой компаундом.
6. По числу ступеней трансформации:
- одноступенчатые;
- двухступенчатые (каскадные).
7. По рабочему напряжению:
- на номинальное напряжение свыше 1000 В;
- на номинальное напряжение до 1000 В.
8. Специальные трансформаторы тока:
- нулевой последовательности;
- пояс Роговского.
Параметры трансформаторов тока
Важными параметрами трансформаторов тока являются коэффициент трансформации и класс точности.
Коэффициент трансформации
Коэффициент трансформации трансформатора тока определяет номинал измерения тока и означает при каком первичном токе во вторичной цепи будет протекать определённый стандартный ток (чаще всего это 5 А, редко 1 А). Первичные токи трансформаторов тока определяются из ряда стандартизированных номинальных токов. Коэффициент трансформации трансформатора тока обычно записывается в виде отношения номинального первичного тока к номинальному вторичному в виде дроби, например: 75/5 (при протекании в первичной обмотке тока 75 А — 5А во вторичной обмотке, замкнутой на измерительные элементы) или 1000/1 (при протекании в первичной цепи 1000 А, во вторичных цепях будет протекать ток 1 А. Иногда трансформаторы тока могут иметь переменный коэффициент трансформации, что возможно пересоединением первичных обмоток из параллельного в последовательное соединение (например такое решение применяется в трансформаторах тока ТФЗМ — 110) либо наличием отводов на первичной или вторичной обмотках (последнее применяется в лабораторных трансформаторах тока типа УТТ) или же изменением количества витков первичного провода, пропускаемого в окно трансформаторов тока без собственной первичной обмотки (трансформаторы тока УТТ).
Класс точности
Для определения класса точности трансформатора тока вводятся понятия:
- погрешности по току ΔI = I2 − I’1, где I2 — действительный вторичный ток, I’1 = I1/n — приведённый первичный ток, I1 — первичный ток, n — коэффициент трансформатора тока;
- погрешности по углу δ = α1 − α2, где α1 — теоретический угол сдвига фаз между первичным и вторичным токами α1 = 180°, α2 — действительный угол между первичным и вторичным током;
- относительной полной погрешности ε% = (|I’1 − I2|) / |I’1|, где |I’1| — модуль комплексного приведённого тока.
Погрешности по току и углу объясняются действием тока намагничивания. Для промышленных трансформаторов тока устанавливаются следующие классы точности: 0,1 0,5; 1; 3, 10Р. Согласно ГОСТ 7746 — 2001 класс точности соответствует погрешности по току ΔI, погрешность по углу равна: ±40’ (класс 0,5); ±80’ (класс 1), для классов 3 и 10Р угол не нормируется. При этом трансформатор тока может быть в классе точности только при сопротивлении во вторичной цепи не более установленного и тока в первичной цепи от 0,05 до 1,2 номинального тока трансформатора. Добавление после обозначения класса точности трансформаторов тока литеры S (например 0,5 S) означает, что трансформатор будет находиться в классе точности от 0,01 до 1,2 номинального тока. Класс 10Р (по старому ГОСТ Д) предназначен для питания цепей защиты и нормируется по относительной полной погрешности, которая не должна превышать 10 % при максимальном токе к. з. и заданном сопротивлении вторичной цепи. Согласно международному стандарту МЭК (IEС 60044-01) трансформаторы тока должны находится в классе точности при протекании по первичной обмотке тока 0,2—200 % номинального, что обычно достигается изготовлением сердечника из нанокристаллических сплавов.
Обозначения трансформаторов тока
Отечественные трансформаторы тока имеют следующее обозначения:
- первая буква в обозначении «Т» — трансформатор тока
- вторая буква — разновидность конструкции: «П» — проходной, «О» — опорный, «Ш» — шинный, «Ф» — в фарфоровой покрышке
- третья буква —материал изоляции: «М» — масляная, «Л» — литая изоляция, «Г» — газовая (элегаз).
Далее через тире пишется класс изоляции трансформатора тока, климатическое исполнение и категория установки Например: ТПЛ — 10УХЛ4 100/5А: «трансформатор тока проходной с литой изоляцией с классом изоляции 10 кВ, для умеренного и холодного климата, категории 4 с коэффициентом трансформации 100/5» (читается как «сто на пять»).
Замечания
- В отличие от трансформатора напряжения, у трансформатора тока режим холостого хода является аварийным. Результирующий магнитный поток в магнитопроводе трансформатора тока равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя («пожар стали»). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора. В случае необходимости отключения измерительного прибора от вторичной обмотки трансформатора тока, её обязательно нужно закоротить.
- Согласно ПУЭ вторичная обмотка трансформатора тока (для защиты от поражения электрического тока при пробое изоляции, либо при индуктировании высокого напряжения из-за обрыва вторичной цепи) обязательно должна заземляться.
См. также
Литература
- ПУЭ
- Шабад М. А. Трансформаторы тока в схемах релейной защиты. Учебное издание. — 1998.
- Родштейн Л. А. Электрические аппараты: Учебник для техникумов. — 3-е изд. — Л.: Энергоиздат. Ленингр. отд-ние, 1981.
- Афанасьев В. В. и др. Трансформаторы тока. — Л.: Энергоатомиздат, 1989.
- Чернобровов Н. В. Релейная защита. — М.: Энергия, 1974.