Эль-Ниньо: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Строка 1: Строка 1:
[[Файл:1997 El Nino TOPEX.jpg|right|thumb|Эль-Ниньо 1997 года (TOPEX)]]
[[Файл:1997 El Nino TOPEX.jpg|right|thumb|Эль-Ниньо 1997 года (TOPEX)]]
{{не путать|Нинья|каравеллой Колумба «Ла Нинья»}}
{{не путать|Нинья|каравеллой Колумба «Ла Нинья»}}
'''Течение Эль-Ни́ньо''' ({{lang-es|El Niño}} — «''малыш, мальчик''»), или Дурацкая '''осцилляция''' ({{lang-en|El Niño/La Niña — [[:en:Southern Oscillation#Southern Oscillation|Southern Oscillation, ENSO]]}}) — колебание температуры поверхностного слоя воды в экваториальной части [[Тихий океан|Тихого океана]], имеющее заметное влияние на климат. В более узком смысле '''Эль-Ниньо''' — фаза Южной осцилляции, в которой область нагретых приповерхностных вод смещается к востоку. При этом ослабевают или вообще прекращаются [[пассаты]], замедляется [[апвеллинг]] в восточной части Тихого океана, у берегов [[Перу]]. Противоположная фаза осцилляции называется '''Ла-Нинья''' ({{lang-es|La Niña}} — «''малышка, девочка''»).
'''Течение Эль-Ни́ньо''' ({{lang-es|El Niño}} — «''малыш, мальчик''»), или '''Южная''' '''осцилляция''' ({{lang-en|El Niño/La Niña — [[:en:Southern Oscillation#Southern Oscillation|Southern Oscillation, ENSO]]}}) — колебание температуры поверхностного слоя воды в экваториальной части [[Тихий океан|Тихого океана]], имеющее заметное влияние на климат. В более узком смысле '''Эль-Ниньо''' — фаза Южной осцилляции, в которой область нагретых приповерхностных вод смещается к востоку. При этом ослабевают или вообще прекращаются [[пассаты]], замедляется [[апвеллинг]] в восточной части Тихого океана, у берегов [[Перу]]. Противоположная фаза осцилляции называется '''Ла-Нинья''' ({{lang-es|La Niña}} — «''малышка, девочка''»).


Характерное время осцилляции — от 3 до 8 лет, однако сила и продолжительность Эль-Ниньо в реальности сильно варьирует. Так, в 1790—1793, 1828, 1876—1878, 1891, 1925—1926, 1982—1983 и 1997—1998 годах были зафиксированы мощные фазы Эль-Ниньо, тогда как, например, в 1991—1992, 1993, 1994 это явление, часто повторяясь, было слабо выраженным. Эль-Ниньо 1997—1998 годов было настолько сильным, что привлекло внимание мировой общественности и прессы. Тогда же распространились теории о связи Южной осцилляции с глобальными изменениями климата. С начала 1980-х Эль-Ниньо возникало также в 1986—1987 и 2002—2003 годах.
Характерное время осцилляции — от 3 до 8 лет, однако сила и продолжительность Эль-Ниньо в реальности сильно варьирует. Так, в 1790—1793, 1828, 1876—1878, 1891, 1925—1926, 1982—1983 и 1997—1998 годах были зафиксированы мощные фазы Эль-Ниньо, тогда как, например, в 1991—1992, 1993, 1994 это явление, часто повторяясь, было слабо выраженным. Эль-Ниньо 1997—1998 годов было настолько сильным, что привлекло внимание мировой общественности и прессы. Тогда же распространились теории о связи Южной осцилляции с глобальными изменениями климата. С начала 1980-х Эль-Ниньо возникало также в 1986—1987 и 2002—2003 годах.

Версия от 13:24, 11 марта 2017

Эль-Ниньо 1997 года (TOPEX)

Течение Эль-Ни́ньо (исп. El Niño — «малыш, мальчик»), или Южная осцилляция (англ. El Niño/La Niña — Southern Oscillation, ENSO) — колебание температуры поверхностного слоя воды в экваториальной части Тихого океана, имеющее заметное влияние на климат. В более узком смысле Эль-Ниньо — фаза Южной осцилляции, в которой область нагретых приповерхностных вод смещается к востоку. При этом ослабевают или вообще прекращаются пассаты, замедляется апвеллинг в восточной части Тихого океана, у берегов Перу. Противоположная фаза осцилляции называется Ла-Нинья (исп. La Niña — «малышка, девочка»).

Характерное время осцилляции — от 3 до 8 лет, однако сила и продолжительность Эль-Ниньо в реальности сильно варьирует. Так, в 1790—1793, 1828, 1876—1878, 1891, 1925—1926, 1982—1983 и 1997—1998 годах были зафиксированы мощные фазы Эль-Ниньо, тогда как, например, в 1991—1992, 1993, 1994 это явление, часто повторяясь, было слабо выраженным. Эль-Ниньо 1997—1998 годов было настолько сильным, что привлекло внимание мировой общественности и прессы. Тогда же распространились теории о связи Южной осцилляции с глобальными изменениями климата. С начала 1980-х Эль-Ниньо возникало также в 1986—1987 и 2002—2003 годах.

Описание

Нормальные условия вдоль западного побережья Перу определяются холодным Перуанским течением, несущим воду с юга. Там, где течение поворачивает на запад, вдоль экватора, из глубоких впадин происходит подъём холодных и богатых биогенами вод, что способствует активному развитию планктона и других форм жизни в океане. Само же холодное течение определяет засушливость климата в этой части Перу, формируя пустыни. Пассаты отгоняют прогретый поверхностный слой воды в западную зону тропической части Тихого океана, где формируется так называемый тропический теплый бассейн (ТТБ). В нём вода прогрета до глубин в 100—200 м[1]. Атмосферная циркуляция Уокера, проявляющаяся в виде пассатов, вкупе с пониженным давлением над районом Индонезии, приводит к тому, что в этом месте уровень Тихого океана на 60 см выше, чем в восточной его части. А температура воды здесь достигает 29—30 °C против 22—24 °C у берегов Перу.

Однако всё меняется с наступлением Эль-Ниньо. Пассаты ослабевают, ТТБ растекается, и на огромной площади Тихого океана происходит повышение температуры воды. В районе Перу холодное течение сменяется движущейся с запада к берегу Перу теплой водной массой, апвеллинг ослабевает, гибнет без питания рыба, а западные ветры приносят в пустыни влажные воздушные массы, ливни, вызывающие даже наводнения. Наступление Эль-Ниньо снижает активность атлантических тропических циклонов.

История открытия

Первое упоминание термина «Эль-Ниньо» относится к 1892 году, когда капитан Камило Каррило сообщил на конгрессе Географического Общества в Лиме, что перуанские моряки назвали теплое северное течение «Эль-Ниньо», так как оно наиболее заметно в дни католического Рождества (эль ниньо называют младенца Христа)[2]. В 1893 году Чарльз Тодд предположил, что засухи в Индии и Австралии происходят в одно и то же время. На то же указывал в 1904 г. и Норман Локьер. О связи теплого северного течения у побережья Перу с наводнениями в этой стране сообщали в 1895 году Пезет и Эгуигурен. Впервые явления Южной осцилляции описал в 1923 году Гилберт Томас Уолкер. Он ввёл сами термины «Южная осцилляция», «Эль-Ниньо» и «Ла-Нинья», рассмотрел зональную конвекционную циркуляцию в атмосфере в приэкваториальной зоне Тихого океана, получившую теперь его имя. Долгое время на явление не обращали почти никакого внимания, считая его региональным. Только к концу XX в. выяснились связи Эль-Ниньо с климатом планеты.

Количественное описание

В настоящее время для количественного описания явления Эль-Ниньо и Ла-Нинья определены как температурные аномалии поверхностного слоя приэкваториальной части Тихого океана продолжительностью не менее 5 месяцев, выражающиеся в отклонении температуры воды на 0,5 °C в б́ольшую (Эль-Ниньо) или меньшую (Ла-Нинья) сторону.

Первые признаки Эль-Ниньо:

  1. Повышение воздушного давления над Индийским океаном, Индонезией и Австралией.
  2. Падение давления над Таити, над центральной и восточной частями Тихого океана.
  3. Ослабление пассатов в южной части Тихого океана вплоть до их прекращения и изменения направления ветра на западное.
  4. Теплая воздушная масса в Перу, дожди в перуанских пустынях.

Само по себе повышение температуры воды у берегов Перу на 0,5 °C считается лишь условием возникновения Эль-Ниньо. Обычно такая аномалия может существовать в течение нескольких недель, а затем благополучно исчезнуть. И только пятимесячная аномалия, классифицирующаяся как явление Эль-Ниньо, может нанести существенный ущерб экономике региона за счет падения уловов рыбы.

Для описания Эль-Ниньо также используется индекс Южной осцилляции (англ. Southern Oscillation Index, SOI). Он вычисляется как разность давлений над Таити и над Дарвином (Австралия). Отрицательные значения индекса свидетельствуют о фазе Эль-Ниньо, а положительные — о Ла-Нинья.

Ранние стадии и характеристики

Диаграмма Ховмюллера, демонстрирующая осцилляцию Маддена — Джулиана. Пятидневная скользящая средняя инфракрасного излучения Земли (англ. Outgoing longwave radiation). Вертикальная ось — время (увеличивается сверху-вниз), горизонтальная ось — долгота. Контуры от верхнего левого угла к правому нижнему показывают движение с запада на восток.

Несмотря на то, что причины Эль-Ниньо до конца ещё не исследованы, известно, что он начинается с того, что пассаты, составная часть циркуляции Уолкера (англ. Walker circulation), ослабляются в течение нескольких месяцев. Серия волн Кельвина (англ. Kelvin wave) движется по Тихому океану вдоль экватора и создаёт массив тёплой воды у Южной Америки, где обычно океан имеет низкие температуры вследствие апвеллинга (подъём глубинных вод океана к поверхности). Ослабление пассатов с учётом противодействия им сильного западного ветра может также создать парный циклон (к югу и к северу от экватора), что является ещё одним признаком будущего Эль-Ниньо[3].

Тихий океан представляет собой огромную теплоохладительную систему, которая обусловливает движение систем воздушных масс. Изменение температуры Тихого океана влияет на погоду в общемировом масштабе[4]. Фронты дождей перемещаются с западной части океана по направлению к Америке, в то время как в Индонезии и Индии устанавливается более сухая погода[5].

Джейкоб Бьеркнес (англ. Jacob Bjerknes), норвежско-американский метеоролог, в 1969 году внёс вклад в изучение Эль-Ниньо, высказав предположение, что аномально тёплая зона в восточной части Тихого океана может ослаблять температурную разницу между восточными и западными частями, лишая силы пассаты, которые способствуют перемещению тёплых вод на запад. Результатом этого становится увеличение тёплых масс воды в восточном направлении[6]. Было предложено несколько моделей накопления тёплых масс в верхних слоях экваториальных вод Тихого океана, которые затем опускаются вниз в ходе Эль-Ниньо[7]. После прохождения Эль-Ниньо зона накопления теплоты затем должна несколько лет «подзаряжаться», прежде чем осуществится следующая осцилляция[8].

Не будучи прямой причиной Эль-Ниньо, осцилляция Маддена — Джулиана продвигает зону избыточных осадков в направлении с запада на восток вдоль тропического пояса с периодом 30—60 дней, что может влиять на скорость развития и на интенсивность Эль-Ниньо и Ла-Нинья несколькими путями[9]. Например, потоки воздуха с запада, проходя между областями низкого атмосферного давления, образованными осцилляцией Маддена — Джулиана, могут спровоцировать образование циклонических циркуляций к северу и югу от экватора. Когда эти циклоны интенсифицируются, западные ветра в пределах экваториальной части Тихого океана также усиливаются и сдвигаются к востоку, являясь, таким образом, составной частью в развитии Эль-Ниньо[10]. Осцилляция Маддена — Джулиана также может быть источником распространяющихся в восточном направлении волн Кельвина (англ. Kelvin wave), которые в свою очередь усиливаются Эль-Ниньо, что приводит к эффекту взаимоусиления[11].

Южная осцилляция

Нормальная тихоокеанская схема: экваториальные ветры двигают массив теплых вод на запад. Холодные воды поднимаются вдоль побережья Южной Америки. Thermocline — термоклин, equator — экватор, convective loop — конвекционная петля (NOAA / PMEL (англ. PMEL) / TAO)
Условия образования Эль-Ниньо: Массив тёплой воды движется к южноамериканскому побережью. Отсутствие поднимающихся с глубины холодных вод усиливает потепление.
Условия образования Ла-Нинья: Тёплые воды сдвигаются западнее, чем обычно.

Южная осцилляция является атмосферным компонентом Эль-Ниньо и представляет собой колебания давления воздуха в приземном слое атмосферы между водами восточной и западной частей Тихого океана. Величина осцилляции измеряется с помощью индекса Южной осцилляции (англ. Southern Oscillation Index, SOI). Индекс вычисляется на основе разности давлений приземного воздуха над Таити и над Дарвином (Австралия)[12]. Эль-Ниньо наблюдался, когда индекс принимал отрицательные значения, что означало минимальную разницу давлений на Таити и в Дарвине.

Низкое атмосферное давление обычно образуется над тёплыми водами, а высокое — над холодными, частью из-за того, что над тёплыми водами происходит интенсивная конвекция. Эль-Ниньо ассоциируется с продолжительными тёплыми периодами в центральной и восточной областях тропической части Тихого океана. Это служит причиной ослабления тихоокеанских пассатов и снижения уровня осадков над восточной и северной Австралией.

Атмосферная циркуляция Уолкера

В период, когда условия не соответствуют образованию Эль-Ниньо, циркуляция Уолкера диагностируется близ поверхности земли в виде восточных пассатов, которые перемещают массивы воды и воздуха, прогретые солнцем, на запад. Это также способствует апвеллингу вдоль побережий Перу и Эквадора, что приносит богатые питательными веществами воды близко к поверхности, увеличивая концентрацию рыбы. В западной части Тихого океана в эти периоды стоит тёплая, влажная погода с низким давлением, избытки влаги аккумулируются в тайфуны и грозы. Как результат этих перемещений, уровень океана в западной части в это время выше на 60 см[13][14][15][16].

Влияние на климат различных регионов

В Южной Америке эффект Эль-Ниньо наиболее выражен. Обычно это явление вызывает теплые и очень влажные летние периоды (с декабря по февраль) на северном побережье Перу и в Эквадоре. Если Эль-Ниньо сильно, оно вызывает сильные наводнения. Таковые, например, случились в январе 2011. Южная Бразилия и северная Аргентина также переживают более влажные, чем обычно, периоды, но, в основном, весной и ранним летом. В центре Чили наблюдается мягкая зима с большим количеством дождей, а в Перу и Боливии иногда происходят необычные для этого региона зимние снегопады. Более сухая и теплая погода наблюдается в бассейне реки Амазонки, в Колумбии и странах Центральной Америки. В Индонезии снижается влажность, увеличивая вероятность возникновения лесных пожаров. Это касается также Филиппин и северной Австралии. С июня по август сухая погода наблюдается в Квинсленде, Виктории, Новом Южном Уэльсе и восточной Тасмании. В Антарктике запад Антарктического полуострова, Земли Росса, морей Беллинсгаузена и Амундсена покрывается большим количеством снега и льда. При этом растет давление и становится теплее. В Северной Америке, как правило, зимы становятся теплее на Среднем Западе и в Канаде. В центральной и южной Калифорнии, на северо-западе Мексики и юго-востоке США становится влажнее, а в северо-западных тихоокеанских штатах США — суше. Во время Ла-Нинья, напротив, суше становится на Среднем Западе. Эль-Ниньо также приводит к снижению активности атлантических ураганов. Восточная Африка, включая Кению, Танзанию и бассейн Белого Нила, испытывают длительные сезоны дождей с марта по май. Засухи преследуют с декабря по февраль южные и центральные регионы Африки, в основном, Замбию, Зимбабве, Мозамбик и Ботсвану.

Эффект, похожий на Эль-Ниньо, иногда наблюдается в Атлантическом океане, где вода вдоль экваториального побережья Африки становится теплее, а у побережья Бразилии — холоднее. Причем, прослеживается связь этой циркуляции с Эль-Ниньо.

Влияние на здоровье и социум

Эль-Ниньо вызывает экстремальные погодные условия, связанные с циклами частоты возникновения эпидемических заболеваний. Эль-Ниньо связан с повышенным риском развития заболеваний, передающихся комарами: малярия, лихорадка денге и лихорадка долины Рифт. Циклы возникновения малярии связаны с Эль-Ниньо в Индии, Венесуэле и Колумбии. Наблюдается связь со вспышками австралийского энцефалита (энцефалит долины Муррей — MVE), проявляющегося на юго-востоке Австралии после сильных дождей и наводнений, вызванных Ла-Нинья. Ярким примером является тяжелая вспышка лихорадки долины Рифт, произошедшая из-за Эль-Ниньо после экстремальных осадков в северо-восточной части Кении и южной части Сомали в 1997—98 гг.[17]

Также считается, что Эль-Ниньо может быть связан с цикличностью войн и возникновением гражданских конфликтов в странах, климат которых зависит от Эль-Ниньо. Изучение данных с 1950 по 2004 год показало, что Эль-Ниньо связан с 21 % всех гражданских конфликтов этого периода. При этом риск возникновения гражданской войны в годы Эль-Ниньо в два раза выше, чем в годы Ла-Нинья. Вероятно, связь между климатом и военными действиями опосредована неурожаями, которые часто приходятся на жаркие годы[18][19].

Недавние случаи

Эль-Ниньо наблюдалось с сентября 2006 года[20] до начала 2007 года[21]. В результате засуха 2007 года вызвала скачок в ценах на продовольственные товары и связанные с этим общественные беспорядки в Египте, Камеруне и Гаити[22].

Согласно Национальному управлению океанических и атмосферных исследований США Эль-Ниньо началось в экваториальной части Тихого океана в июне 2009 года, достигнув пика в январе — феврале 2010 года. Повышенная температура поверхности воды наблюдалась до мая 2010 года, перейдя затем в пониженное значение (Ла-Нинья) и вернувшись к нормальным значениям к апрелю 2012 года. Этот приход Эль-Ниньо вызвал самую суровую за последние четыре десятилетия засуху в Индии[22].

В июне 2014 года Метеорологическая служба Великобритании (en: Met Office) сообщила о высокой вероятности развития Эль-Ниньо в 2014 году[23], однако, её прогноз не сбылся[24]. Осенью 2015 года Всемирная метеорологическая организация сообщила, что, появившийся раньше срока и получивший название «Брюс Ли», Эль-Ниньо может стать одним из самых мощных, начиная с 1950 года[25][26]. Дожди и наводнения сопровождали Рождественские праздники в США (вдоль реки Миссисипи), в Южной Америке (вдоль Ла-Платы) и даже в Северо-Западной Англии. В 2016 году влияние Эль-Ниньо продолжилось.

Примечания

  1. Научная Сеть. Феномен Эль-Ниньо
  2. Алена Миклашевская, Алена Миклашевская. Тихий океан ждет похолодание // Коммерсантъ.
  3. Tim Liu. El Niño Watch from Space. НАСА (6 сентября 2005). Дата обращения: 31 мая 2010.
  4. Stewart, Robert El Niño and Tropical Heat. Our Ocean Planet: Oceanography in the 21st Century. Department of Oceanography, Техасский университет A&M (6 января 2009). Дата обращения: 25 июля 2009. Архивировано 11 мая 2013 года.
  5. Dr. Tony Phillips. A Curious Pacific Wave. National Aeronautics and Space Administration (5 марта 2002). Дата обращения: 24 июля 2009. Архивировано 11 мая 2013 года.
  6. Nova. 1969. Public Broadcasting Service (1998). Дата обращения: 24 июля 2009. Архивировано 11 мая 2013 года.
  7. De-Zheng Sun. Nonlinear Dynamics in Geosciences: 29 The Role of El Niño—Southern Oscillation in Regulating its Background State. — Springer, 2007. — ISBN 978-0-387-34917-6. — doi:10.1007/978-0-387-34918-3.
  8. Soon-Il An and In-Sik Kang (2000). "A Further Investigation of the Recharge Oscillator Paradigm for ENSO Using a Simple Coupled Model with the Zonal Mean and Eddy Separated". Journal of Climate. 13 (11): 1987—93. Bibcode:2000JCli...13.1987A. doi:10.1175/1520-0442(2000)013<1987:AFIOTR>2.0.CO;2. ISSN 1520-0442. Дата обращения: 24 июля 2009.
  9. Jon Gottschalck and Wayne Higgins. Madden Julian Oscillation Impacts. Центр климатического прогнозирования (США) (англ. Climate Prediction Center) (16 февраля 2008). Дата обращения: 24 июля 2009. Архивировано 11 мая 2013 года.
  10. Air-Sea Interaction & Climate. El Niño Watch from Space. Jet Propulsion Laboratory California Institute of Technology (6 сентября 2005). Дата обращения: 17 июля 2009.
  11. Eisenman, Ian (2005). "Westerly Wind Bursts: ENSO's Tail Rather than the Dog?". Journal of Climate. 18 (24): 5224—38. Bibcode:2005JCli...18.5224E. doi:10.1175/JCLI3588.1. {{cite journal}}: Неизвестный параметр |coauthors= игнорируется (|author= предлагается) (справка)
  12. Climate glossary - Southern Oscilliation Index (SOI). Бюро метеорологии (3 апреля 2002). Дата обращения: 31 декабря 2009. Архивировано 11 мая 2013 года.
  13. Pidwirny, Michael Chapter 7: Introduction to the Atmosphere. Fundamentals of Physical Geography. physicalgeography.net (2 февраля 2006). Дата обращения: 30 декабря 2006. Архивировано 11 мая 2013 года.
  14. Envisat watches for La Niña. BNSC via the Internet Wayback Machine (9 января 2011). Дата обращения: 26 июля 2007. Архивировано 24 апреля 2008 года.
  15. The Tropical Atmosphere Ocean Array: Gathering Data to Predict El Niño. Celebrating 200 Years. NOAA (8 января 2007). Дата обращения: 26 июля 2007. Архивировано 11 мая 2013 года.
  16. Ocean Surface Topography. Oceanography 101. JPL (5 июля 2006). Дата обращения: 26 июля 2007. Архивировано 11 мая 2013 года.Annual Sea Level Data Summary Report July 2005 - June 2006 (PDF). The Australian Baseline Sea Level Monitoring Project. Bureau of Meteorology. Дата обращения: 26 июля 2007. Архивировано 7 августа 2007 года.
  17. El Niño and its health impact. Health Topics A to Z. Дата обращения: 1 января 2011. Архивировано 13 февраля 2012 года..
  18. Hsiang, S. M., Meng, K. C. & Cane, M. A. (2011). "Civil conflicts are associated with the global climate". Nature. 476: 438—441. doi:10.1038/nature10311.{{cite journal}}: Википедия:Обслуживание CS1 (множественные имена: authors list) (ссылка)
  19. Quirin Schiermeier (2011). "Climate cycles drive civil war". Nature. 476: 406—407. doi:10.1038/news.2011.501.
  20. Pastor, Rene (2006-09-14). "El Niño climate pattern forms in Pacific Ocean". USA Today.
  21. Borenstein, Seth (2007-02-28). "There Goes El Niño, Here Comes La Niña". CBS News.
  22. 1 2 Азия готовится защищаться от угрозы Эль-Ниньо — AgroXXI
  23. Lenta.ru: Наука и техника: Наука: Эль-Ниньо приведет к глобальным климатическим катаклизмам
  24. Новый Эль-Ниньо набирает силу в Тихом океане — BBC Русская служба
  25. [1] GISMETEO, 3 сентября 2015
  26. Эмили Беккер По следам Эль-Ниньо // В мире науки. — 2016. — № 12. — С. 74—84.

Литература

  • César N. Caviedes, 2001. El Niño in History : Storming Through the Ages (University Press of Florida)
  • Brian Fagan , 1999. Floods, Famines, and Emperors : El Niño and the Fate of Civilizations (Basic Books)
  • Michael H. Glantz, 2001. Currents of change, ISBN 0-521-78672-X
  • Mike Davis, Late Victorian Holocausts: El Niño Famines and the Making of the Third World (2001), ISBN 1-85984-739-0
  • Всеволод Бернштейн, Эль-Ниньо (2011), ISBN 978-5-91709-009-2
  • S. M. Hsiang, K. C. Meng, M. A. Cane. Civil conflicts are associated with the global climate // Nature. 2011. V. 476. P. 438—441.
  • Quirin Schiermeier (2011). «Climate cycles drive civil war». Nature476: 406—407. doi:10.1038/news.2011.501.

Ссылки