Формула Остроградского — Гаусса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Исправлена опечатка
Метки: с мобильного устройства из мобильной версии
м викификация
Строка 1: Строка 1:
'''Фо́рмула Гаусса - Остроградского''' — [[математическая формула]], которая выражает [[поток векторного поля|поток непрерывно-дифференцируемого векторного поля]] через замкнутую [[поверхность]] [[интеграл]]ом от [[дивергенция|дивергенции]] этого поля по [[объём]]у, ограниченному этой поверхностью:
'''Фо́рмула Гаусса — Остроградского''' — [[математическая формула]], которая выражает [[поток векторного поля|поток непрерывно-дифференцируемого векторного поля]] через замкнутую [[поверхность]] [[интеграл]]ом от [[дивергенция|дивергенции]] этого поля по [[объём]]у, ограниченному этой поверхностью:


: <math>\iiint\limits_V\mathrm{div}\,\mathbf{F}\,dV=\int\limits_{\;\,S}\!\!\!\!\int\!\!\!\!\!\!\!\!\!\!\!\;\!\!\;\subset\!\!\supset\mathbf F\cdot\mathbf{n}\,dS,</math>,
: <math>\iiint\limits_V\mathrm{div}\,\mathbf{F}\,dV=\int\limits_{\;\,S}\!\!\!\!\int\!\!\!\!\!\!\!\!\!\!\!\;\!\!\;\subset\!\!\supset\mathbf F\cdot\mathbf{n}\,dS,</math>,
Строка 8: Строка 8:
В работе Остроградского формула записана в следующем виде:
В работе Остроградского формула записана в следующем виде:
: <math>\int\left(\frac{dP}{dx}+\frac{dQ}{dy}+\frac{dR}{dz}\right)\omega=\int(P\cos\alpha+Q\cos\beta+R\cos\gamma)s,</math>
: <math>\int\left(\frac{dP}{dx}+\frac{dQ}{dy}+\frac{dR}{dz}\right)\omega=\int(P\cos\alpha+Q\cos\beta+R\cos\gamma)s,</math>
где <math>\omega</math> и <math>s</math> — дифференциалы объёма и поверхности соответственно, а <math>cos\alpha {ds}={dy}{dz}</math>, <math>cos\beta {ds}={dx}{dz}</math> и <math>cos\gamma {ds}={dx}{dy}</math>. В современной записи <math>\omega=d\Omega</math> — элемент объёма, <math>s=dS</math> — элемент поверхности. <math>P=P(x,\;y,\;z),\;Q=Q(x,\;y,\;z),\;R=R(x,\;y,\;z)</math> — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью<ref>Ильин В. А. и др. Математический анализ. Продолжение курса / В. А. Ильин, В. А. Садовничий, Бл. X. Сендов. Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987.— 358 с.</ref>.
где <math>\omega</math> и <math>s</math> — дифференциалы объёма и поверхности соответственно, а <math>cos\alpha {ds}={dy}{dz}</math>, <math>cos\beta {ds}={dx}{dz}</math> и <math>cos\gamma {ds}={dx}{dy}</math>. В современной записи <math>\omega=d\Omega</math> — элемент объёма, <math>s=dS</math> — элемент поверхности. <math>P=P(x,\;y,\;z),\;Q=Q(x,\;y,\;z),\;R=R(x,\;y,\;z)</math> — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью<ref>Ильин В. А. и др. Математический анализ. Продолжение курса / В. А. Ильин, В. А. Садовничий, Бл. X. Сендов. Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987.— 358 с.</ref>.


Обобщением формулы Остроградского является [[формула Стокса]] для [[многообразие|многообразий]] с краем.
Обобщением формулы Остроградского является [[формула Стокса]] для [[многообразие|многообразий]] с краем.


== История ==
== История ==
Впервые теорема была установлена [[Лагранж, Жозеф Луи|Лагранжем]] в 1762<ref>В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) "Nouvelles recherches sur la nature et la propagation du son" (Новые исследования о природе и распространении звука), ''Miscellanea Taurinensia'' (''Mélanges de Turin''), '''2''': 11 - 172. Репринтное издание: [http://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false "Nouvelles recherches sur la nature et la propagation du son"] в кн.: J.A. Serret, ed., ''Oeuvres de Lagrange'', (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151-316; [http://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false на страницах 263-265] Лагранж преобразовывает тройные интегралы в двойные с помощью [[Интегрирование по частям|интегрирования по частям]].</ref>.
Впервые теорема была установлена [[Лагранж, Жозеф Луи|Лагранжем]] в 1762<ref>В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), ''Miscellanea Taurinensia'' (''Mélanges de Turin''), '''2''': 11 — 172. Репринтное издание: [http://books.google.com/books?id=3TA4DeQw1NoC&pg=PA151#v=onepage&q&f=false «Nouvelles recherches sur la nature et la propagation du son»] в кн.: J.A. Serret, ed., ''Oeuvres de Lagrange'', (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; [http://books.google.com/books?id=3TA4DeQw1NoC&pg=PA263#v=onepage&q&f=false на страницах 263—265] Лагранж преобразовывает тройные интегралы в двойные с помощью [[Интегрирование по частям|интегрирования по частям]].</ref>.


Общий метод преобразования тройного интеграла к поверхностному впервые показал [[Гаусс, Карл Фридрих|Карл Фридрих Гаусс]] ([[1813]], [[1830]] гг.) на примере задач [[Электродинамика|электродинамики]]<ref name=A>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150-151.</ref>.
Общий метод преобразования тройного интеграла к поверхностному впервые показал [[Гаусс, Карл Фридрих|Карл Фридрих Гаусс]] ([[1813]], [[1830]] гг.) на примере задач [[Электродинамика|электродинамики]]<ref name=A>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.</ref>.


В [[1826 год]]у [[Остроградский, Михаил Васильевич|М. В. Остроградский]] вывел формулу в общем виде, представив её в виде теоремы (опубликовано в [[1831 год]]у). Многомерное обобщение формулы М. В. Остроградский опубликовал в [[1834 год]]у<ref name=A/>. С помощью данной формулы Остроградский нашёл выражение производной по параметру от <math>n</math>-кратного интеграла с переменными пределами и получил формулу для вариации <math>n</math>-кратного интеграла.
В [[1826 год]]у [[Остроградский, Михаил Васильевич|М. В. Остроградский]] вывел формулу в общем виде, представив её в виде теоремы (опубликовано в [[1831 год]]у). Многомерное обобщение формулы М. В. Остроградский опубликовал в [[1834 год]]у<ref name=A/>. С помощью данной формулы Остроградский нашёл выражение производной по параметру от <math>n</math>-кратного интеграла с переменными пределами и получил формулу для вариации <math>n</math>-кратного интеграла.


За рубежом формула как правило называется «теоремой о дивергенции» ({{lang-en|divergence theorem}}), иногда — '''формулой Гаусса''' или «формулой (теоремой) Гаусса—Остроградского».
За рубежом формула как правило называется «теоремой о дивергенции» ({{lang-en|divergence theorem}}), иногда — '''формулой Гаусса''' или «формулой (теоремой) Гаусса—Остроградского».


== См. также ==
== См. также ==

* [[Теорема Стокса]]
* [[Теорема Стокса]]
* [[Теорема Грина]]
* [[Теорема Грина]]
Строка 34: Строка 33:


[[Категория:Интегральное исчисление]]
[[Категория:Интегральное исчисление]]
[[Категория:Теоремы математического анализа|Гаусса — Остроградского]]
[[Категория:Теоремы математического анализа|Гаусса — Остроградского]]
[[Категория:Дифференциальная геометрия и топология]]
[[Категория:Дифференциальная геометрия и топология]]

Версия от 11:32, 29 марта 2017

Фо́рмула Гаусса — Остроградского — математическая формула, которая выражает поток непрерывно-дифференцируемого векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:

,

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму , равен потоку вектора через поверхность , ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

В работе Остроградского формула записана в следующем виде:

где и  — дифференциалы объёма и поверхности соответственно, а , и . В современной записи  — элемент объёма,  — элемент поверхности.  — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью[1].

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

История

Впервые теорема была установлена Лагранжем в 1762[2].

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830 гг.) на примере задач электродинамики[3].

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[3]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от -кратного интеграла с переменными пределами и получил формулу для вариации -кратного интеграла.

За рубежом формула как правило называется «теоремой о дивергенции» (англ. divergence theorem), иногда — формулой Гаусса или «формулой (теоремой) Гаусса—Остроградского».

См. также

Литература

  • Остроградский М. В. Note sur les integrales definies. // Mem. l’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
  • Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. l’Acad., 1, стр. 35—58, 24/1 1834 (1838).

Примечания

  1. Ильин В. А. и др. Математический анализ. Продолжение курса / В. А. Ильин, В. А. Садовничий, Бл. X. Сендов. Под ред. А. Н. Тихонова. — М.: Изд-во МГУ, 1987.— 358 с.
  2. В работе по теории звука в 1762 г. Лагранж рассматривает частный случай теоремы: Lagrange (1762) «Nouvelles recherches sur la nature et la propagation du son» (Новые исследования о природе и распространении звука), Miscellanea Taurinensia (Mélanges de Turin), 2: 11 — 172. Репринтное издание: «Nouvelles recherches sur la nature et la propagation du son» в кн.: J.A. Serret, ed., Oeuvres de Lagrange, (Paris, France: Gauthier-Villars, 1867), vol. 1, pages 151—316; на страницах 263—265 Лагранж преобразовывает тройные интегралы в двойные с помощью интегрирования по частям.
  3. 1 2 Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150—151.