F-тест: различия между версиями
[отпатрулированная версия] | [отпатрулированная версия] |
Niklem (обсуждение | вклад) |
Niklem (обсуждение | вклад) →Ссылки: лишнее |
||
Строка 76: | Строка 76: | ||
== Примечания == |
== Примечания == |
||
{{Примечания}} |
{{Примечания}} |
||
== Ссылки == |
|||
* [http://www.public.iastate.edu/~alicia/stat328/Multiple%20regression%20-%20F%20test.pdf Testing utility of model — F-test] |
|||
* [http://rkb.home.cern.ch/rkb/AN16pp/node81.html F-test] |
|||
* [http://www.psychol-ok.ru/statistics/fisher/ Автоматический расчет φ* критерия] |
|||
* [http://www.vsetabl.ru/183.htm Таблица 15х20 критических значений критерия Фишера (F-критерия) для уровня значимости 0.05] |
|||
[[Категория:Статистические критерии]] |
[[Категория:Статистические критерии]] |
||
[[Категория:Эконометрика]] |
|||
[[Категория:Дисперсионный анализ]] |
[[Категория:Дисперсионный анализ]] |
Версия от 14:01, 29 марта 2017
F-тестом или критерием Фишера (F-критерием, φ*-критерием) — называют любой статистический критерий, тестовая статистика которого при выполнении нулевой гипотезы имеет распределение Фишера (F-распределение).
Статистика теста так или иначе сводится к отношению выборочных дисперсий (сумм квадратов, деленных на «степени свободы»). Чтобы статистика имела распределение Фишера, необходимо, чтобы числитель и знаменатель были независимыми случайными величинами и соответствующие суммы квадратов имели распределение Хи-квадрат. Для этого требуется, чтобы данные имели нормальное распределение. Кроме того, предполагается, что дисперсия случайных величин, квадраты которых суммируются, одинакова.
Тест проводится путём сравнения значения статистики с критическим значением соответствующего распределения Фишера при заданном уровне значимости. Известно, что если , то . Кроме того, квантили распределения Фишера обладают свойством . Поэтому обычно на практике в числителе участвует потенциально большая величина, в знаменателе — меньшая и сравнение осуществляется с «правой» квантилью распределения. Тем не менее тест может быть и двусторонним и односторонним. В первом случае при уровне значимости используется квантиль , а при одностороннем тесте [1].
Более удобный способ проверки гипотез — с помощью p-значения — вероятностью того, что случайная величина с данным распределением Фишера превысит данное значение статистики. Если (для двустороннего теста — )) меньше уровня значимости , то нулевая гипотеза отвергается, в противном случае принимается.
Примеры F-тестов
F-тест на равенство дисперсий
Две выборки
Пусть имеются две выборки объёмом m и n соответственно случайных величин X и Y, имеющих нормальное распределение. Необходимо проверить равенство их дисперсий. Статистика теста
где — выборочная дисперсия.
Если статистика больше критического, то дисперсии случайных величин признаются не одинаковыми.
Несколько выборок
Пусть выборка объёмом N случайной величины X разделена на k групп с количеством наблюдений в i-ой группе.
Межгрупповая («объяснённая») дисперсия:
Внутригрупповая («необъяснённая») дисперсия:
Данный тест можно свести к тестированию значимости регрессии переменной X на фиктивные переменные-индикаторы групп. Если статистика превышает критическое значение, то гипотеза о равенстве дисперсий в выборках отвергается, в противном случае дисперсии можно считать одинаковыми.
Проверка ограничений на параметры регрессии
Статистика теста для проверки линейных ограничений на параметры классической нормальной линейной регрессии определяется по формуле:
где -количество ограничений, n-объём выборки, k-количество параметров модели, ESS-сумма квадратов остатков модели, -коэффициент детерминации, индексы S и L относятся соответственно к короткой и длинной модели (модели с ограничениями и модели без ограничений).
Замечание
Описанный выше F-тест является точным в случае нормального распределения случайных ошибок модели. Однако F-тест можно применить и в более общем случае. В этом случае он является асимптотическим. Соответствующую F-статистику можно рассчитать на основе статистик других асимптотических тестов — теста Вальда (W), теста множителей Лагранжа(LM) и теста отношения правдоподобия (LR) — следующим образом:
Все эти статистики асимптотически имеют распределение F(q, n-k), несмотря на то, что их значения на малых выборках могут различаться.
Проверка значимости линейной регрессии
Данный тест очень важен в регрессионном анализе и по существу является частным случаем проверки ограничений. В данном случае нулевая гипотеза — об одновременном равенстве нулю всех коэффициентов при факторах регрессионной модели (то есть всего ограничений k-1). В данном случае короткая модель — это просто константа в качестве фактора, то есть коэффициент детерминации короткой модели равен нулю. Статистика теста равна:
Соответственно, если значение этой статистики больше критического значения при данном уровне значимости, то нулевая гипотеза отвергается, что означает статистическую значимость регрессии. В противном случае модель признается незначимой.
Пример
Пусть оценивается линейная регрессия доли расходов на питание в общей сумме расходов на константу, логарифм совокупных расходов, количество взрослых членов семьи и количество детей до 11 лет. То есть всего в модели 4 оцениваемых параметра (k=4). Пусть по результатам оценки регрессии получен коэффициент детерминации . По вышеприведенной формуле рассчитаем значение F-статистики в случае, если регрессия оценена по данным 34 наблюдений и по данным 64 наблюдений:
Критическое значение статистики при 1 % уровне значимости (в Excel функция FРАСПОБР) в первом случае равно , а во втором случае . В обоих случаях регрессия признается значимой при заданном уровне значимости. В первом случае P-значение равно 0,1 %, а во втором — 0,00005 %. Таким образом, во втором случае уверенность в значимости регрессии существенно выше (существенно меньше вероятность ошибки в случае признания модели значимой).
Проверка гетероскедастичности
См. также
- Проверка статистических гипотез
- Статистический критерий
- Тест Вальда
- Тест отношения правдоподобия
- Тест множителей Лагранжа
- Тест Голдфелда-Куандта