Квадратный корень из 2: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Отмена — Википедия не публикует новые результаты, не подтверждённые независимыми источниками
Нет описания правки
Строка 49: Строка 49:
Геометрически корень из 2 можно представить как длину [[Диагональ|диагонали]] квадрата со стороной 1 (это следует из [[Теорема Пифагора|теоремы Пифагора]]). Вероятно, это было первое известное в [[История математики|истории математики]] [[иррациональное число]] (то есть число, которое нельзя точно представить в виде [[Дробь (математика)|дроби]]).
Геометрически корень из 2 можно представить как длину [[Диагональ|диагонали]] квадрата со стороной 1 (это следует из [[Теорема Пифагора|теоремы Пифагора]]). Вероятно, это было первое известное в [[История математики|истории математики]] [[иррациональное число]] (то есть число, которое нельзя точно представить в виде [[Дробь (математика)|дроби]]).


[[Файл:Dedekind cut sqrt 2.svg| thumb| right| 200px| Квадратный корень из 2.]]
[[Файл:Dedekind cut sqrt 2.svg|thumb|200px|Квадратный корень из 2.]]
Хорошим и часто используемым приближением к <math>\sqrt{2}</math> является дробь <math>\tfrac{99}{70}</math>. Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.
Хорошим и часто используемым приближением к <math>\sqrt{2}</math> является дробь <math>\tfrac{99}{70}</math>. Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.


== История ==
== История ==
[[Файл:Ybc7289-bw.jpg|right|thumb|200px|Вавилонская глиняная табличка с максимально точным указанием длины диагонали единичного квадрата четырёхзначным шестидесятеричным числом.]]
[[Файл:Ybc7289-bw.jpg|thumb|200px|Вавилонская глиняная табличка с максимально точным указанием длины диагонали единичного квадрата четырёхзначным шестидесятеричным числом.]]
Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт наиболее точное приближённое значение <math>\sqrt{2}</math> при записи в четырёх шестидесятеричных цифрах, что после округления составляет 6 точных десятичных цифр:
Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт наиболее точное приближённое значение <math>\sqrt{2}</math> при записи в четырёх шестидесятеричных цифрах, что после округления составляет 6 точных десятичных цифр:


Строка 111: Строка 111:
== Доказательство иррациональности ==
== Доказательство иррациональности ==
Применим [[доказательство от противного]]: допустим, <math>\sqrt{2}</math> [[рациональное число|рационален]], то есть представляется в виде дроби <math>\frac{m}{n}</math>, где <math>m</math> и <math>n</math> — [[целое число|целые числа]].
Применим [[доказательство от противного]]: допустим, <math>\sqrt{2}</math> [[рациональное число|рационален]], то есть представляется в виде дроби <math>\frac{m}{n}</math>, где <math>m</math> и <math>n</math> — [[целое число|целые числа]].

Возведём предполагаемое равенство в квадрат:
Возведём предполагаемое равенство в квадрат:
: <math>\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow m^2 = 2n^2</math>.
: <math>\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2} \Rightarrow m^2 = 2n^2</math>.
Строка 130: Строка 131:
* [[Иррациональные числа]]
* [[Иррациональные числа]]
* [[Теорема Виета]]
* [[Теорема Виета]]

== Примечания ==
{{примечания}}


== Литература ==
== Литература ==
Строка 138: Строка 142:
== Ссылки ==
== Ссылки ==
* [http://mathworld.wolfram.com/PythagorassConstant.html Pythagoras's Constant]{{ref-en}}.
* [http://mathworld.wolfram.com/PythagorassConstant.html Pythagoras's Constant]{{ref-en}}.

== Примечания ==
{{примечания}}



{{нет источников|дата=2014-07-04}}
{{нет источников|дата=2014-07-04}}

Версия от 18:59, 11 июля 2017

Иррациональные числа
ζ(3) — ρ — 2 — 3 — 5ln 2φ,Φ — ψα,δ — eeπ и π
Система счисления Оценка числа 2
Десятичная 1.4142135623730950488…
Двоичная 1.0110101000001001111…
Шестнадцатеричная 1.6A09E667F3BCC908B2F…
Шестидесятеричная 1; 24 51 10 07 46 06 04 44 50 …
Рациональные приближения 3/2; 7/5; 17/12; 41/29; 99/70; 239/169; 577/408; 1393/985; 3363/2378; 8119/5741; 19601/13860

(перечислено в порядке увеличения точности)

Непрерывная дробь
Квадратный корень из 2 равен длине гипотенузы в прямоугольном треугольнике с длиной катетов 1.

Квадратный корень из числа 2 — положительное вещественное число, которое при умножении само на себя даёт число 2. Обозначение:

Геометрически корень из 2 можно представить как длину диагонали квадрата со стороной 1 (это следует из теоремы Пифагора). Вероятно, это было первое известное в истории математики иррациональное число (то есть число, которое нельзя точно представить в виде дроби).

Квадратный корень из 2.

Хорошим и часто используемым приближением к является дробь . Несмотря на то, что числитель и знаменатель дроби лишь двузначные целые, оно отличается от реального значения меньше, чем на 1/10000.

История

Вавилонская глиняная табличка с максимально точным указанием длины диагонали единичного квадрата четырёхзначным шестидесятеричным числом.

Вавилонская глиняная табличка (ок. 1800—1600 до н. э.) даёт наиболее точное приближённое значение при записи в четырёх шестидесятеричных цифрах, что после округления составляет 6 точных десятичных цифр:

Другое раннее приближение этого числа в древнеиндийском математическом тексте, Шульба-сутры (ок. 800—200 до н. э.) даётся следующим образом:

Пифагорейцы обнаружили, что диагональ квадрата несоизмерима с его стороной, или на современном языке, что квадратный корень из двух является иррациональным. Мало что известно с определённостью о времени и обстоятельствах этого выдающегося открытия, но традиционно его авторство приписывается Гиппасу из Метапонта, которого за это открытие, по разным вариантам легенды, пифагорейцы не то убили, не то изгнали, поставив ему в вину разрушение главной пифагорейской доктрины о том, что «всё есть [натуральное] число». Поэтому квадратный корень из 2 иногда называют постоянной Пифагора, так как именно пифагорейцы доказали его иррациональность, тем самым открыв существование иррациональных чисел[источник не указан 4110 дней].

Алгоритмы вычисления

Существует множество алгоритмов для вычисления значения квадратного корня из двух. В результате алгоритма получается приблизительное значение в виде обыкновенной или десятичной дроби. Самый популярный алгоритм для этого, который используется во многих компьютерах и калькуляторах, это вавилонский метод вычисления квадратных корней. Он состоит в следующем:

Чем больше повторений в алгоритме (то есть, чем больше «n»), тем лучше приближение квадратного корня из двух. Каждое повторение приблизительно удваивает количество правильных цифр. Приведём несколько первых приближений, начиная с :

  • 3/2 = 1.5
  • 17/12 = 1.416…
  • 577/408 = 1.414215…
  • 665857/470832 = 1.4142135623746…

В 1997 году Ясумаса Канада вычислил значение до 137 438 953 444 десятичных знаков после запятой. В феврале 2007 года рекорд был побит: Сигэру Кондо вычислил 200 миллиардов десятичных знаков после запятой в течение 13 дней и 14 часов, используя процессор с частотой 3,6 ГГц и 16 ГБ ОЗУ. Среди математических констант только было вычислено более точно[источник не указан 3210 дней].

Мнемоническое правило

Для запоминания значения корня из двойки с восемью знаками после запятой (1,41421356) можно воспользоваться следующим текстом (число букв в каждом слове соответствует десятичной цифре): «И плод у меня, но у них много корней».

Свойства квадратного корня из двух

Половина приблизительно равна 0.70710 67811 86548; эта величина даёт в геометрии и тригонометрии координаты единичного вектора, образующего угол 45° с координатными осями:

Одно из интересных свойств состоит в следующем:

. Потому что

Это является результатом свойства серебряного сечения.

Другое интересное свойство :

Квадратный корень из двух может быть выражен в мнимых единицах i используя только квадратные корни и арифметические операции:

и

Квадратный корень из 2 является единственным числом, отличным от 1, чья бесконечная тетрация равна его квадрату.

Квадратный корень из двух может быть также использован для приближения :

С точки зрения высшей алгебры, является корнем многочлена и поэтому является целым алгебраическим числом[2]. Множество чисел вида , где  — рациональные числа, образует алгебраическое поле. Оно обозначается и является подполем поля вещественных чисел.

Доказательство иррациональности

Применим доказательство от противного: допустим, рационален, то есть представляется в виде дроби , где и  — целые числа.

Возведём предполагаемое равенство в квадрат:

.

Так как разложение m2 на простые множители содержит 2 в четной степени, а 2n2 — в нечетной, равенство m2=2n2 невозможно. Значит, исходное предположение было неверным, и  — иррациональное число.

Непрерывная дробь

Квадратный корень из двух может быть представлен в виде непрерывной дроби:

Подходящие дроби данной непрерывной дроби дают приближённые значения, быстро сходящиеся к точному квадратному корню из двух. Способ их вычисления прост: если обозначить предыдущую подходящую дробь , то последующая имеет вид . Скорость сходимости здесь меньше, чем у метода Ньютона, но вычисления гораздо проще. Выпишем несколько первых приближений:

Квадрат последней приведенной дроби равен (округлённо) 2,000000177.

Размер бумаги

Квадратный корень из двух используется в соотношении сторон листа бумаги формата ISO 216. Соотношение сторон равно . При разрезании листа пополам параллельно его короткой стороне, получатся два листа той же пропорции. Это позволяет нумеровать форматы бумаги одним числом по убыванию площади листа (числу разрезов): А0, А1, А2, А3, А4,…

См. также

Примечания

Литература

  • Клауди Альсина. Секта чисел. Теорема Пифагора. — М.: Де Агостини, 2014. — 152 с. — (Мир математики: в 45 томах, том 5). — ISBN 978-5-9774-0633-8.

Ссылки