Солнечная вспышка: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
эта вспышка была 6 сентября, и она уже есть в списке
Нет описания правки
Строка 1: Строка 1:
[[Файл:Solarflare hinode.png|thumb|300px|Солнечная вспышка, фотография спутника [[Hinode]]. Наблюдается как две узких, ярких структуры около южной части солнечного пятна.]]
[[Файл:Solarflare hinode.png|thumb|300px|Солнечная вспышка, фотография спутника [[Hinode]]. Наблюдается как две узких, ярких структуры около южной части солнечного пятна.]]
'''Со́лнечная вспы́шка''' — взрывной процесс выделения [[Энергия|энергии]] (кинетической , световой и тепловой ) в [[Звёздная атмосфера|атмосфере]] [[Солнце|Солнца]]. Вспышки так или иначе охватывают все слои солнечной атмосферы: [[Фотосфера|фотосферу]], [[Хромосфера|хромосферу]] и [[Солнечная корона|корону Солнца]]. Необходимо отметить, что солнечные вспышки и [[корональные выбросы массы]] являются различными и независимыми явлениями солнечной активности. Энерговыделение мощной солнечной вспышки может достигать 6×10<sup>25</sup> джоулей, что составляет около {{frac|1|6}} энергии, выделяемой Солнцем за секунду, или 160 млрд [[Мегатонна тринитротолуола|мегатонн в тротиловом эквиваленте]], что, для сравнения, составляет приблизительный объем мирового потребления электроэнергии за 1 миллион лет.
'''Со́лнечная вспы́шка''' — взрывной процесс выделения [[Энергия|энергии]] (кинетической, световой и тепловой) в [[Звёздная атмосфера|атмосфере]] [[Солнце|Солнца]]. Вспышки так или иначе охватывают все слои солнечной атмосферы: [[Фотосфера|фотосферу]], [[Хромосфера|хромосферу]] и [[Солнечная корона|корону Солнца]]. Необходимо отметить, что солнечные вспышки и [[корональные выбросы массы]] являются различными и независимыми явлениями солнечной активности. Энерговыделение мощной солнечной вспышки может достигать 6×10<sup>25</sup> джоулей, что составляет около {{frac|1|6}} энергии, выделяемой Солнцем за секунду, или 160 млрд [[Мегатонна тринитротолуола|мегатонн в тротиловом эквиваленте]], что, для сравнения, составляет приблизительный объем мирового потребления электроэнергии за 1 миллион лет.


Фотоны от вспышки достигают Земли примерно за 8,5 минут после её начала; далее в течение нескольких десятков минут доходят мощные потоки заряженных частиц, а облака плазмы от солнечной вспышки достигают нашей планеты только через двое-трое суток.
Фотоны от вспышки достигают Земли примерно за 8,5 минут после её начала; далее в течение нескольких десятков минут доходят мощные потоки заряженных частиц, а облака плазмы от солнечной вспышки достигают нашей планеты только через двое-трое суток.

Версия от 09:10, 12 сентября 2017

Солнечная вспышка, фотография спутника Hinode. Наблюдается как две узких, ярких структуры около южной части солнечного пятна.

Со́лнечная вспы́шка — взрывной процесс выделения энергии (кинетической, световой и тепловой) в атмосфере Солнца. Вспышки так или иначе охватывают все слои солнечной атмосферы: фотосферу, хромосферу и корону Солнца. Необходимо отметить, что солнечные вспышки и корональные выбросы массы являются различными и независимыми явлениями солнечной активности. Энерговыделение мощной солнечной вспышки может достигать 6×1025 джоулей, что составляет около 16 энергии, выделяемой Солнцем за секунду, или 160 млрд мегатонн в тротиловом эквиваленте, что, для сравнения, составляет приблизительный объем мирового потребления электроэнергии за 1 миллион лет.

Фотоны от вспышки достигают Земли примерно за 8,5 минут после её начала; далее в течение нескольких десятков минут доходят мощные потоки заряженных частиц, а облака плазмы от солнечной вспышки достигают нашей планеты только через двое-трое суток.

Описание

Фотография вспышки 1895 года.

Продолжительность импульсной фазы солнечных вспышек обычно не превышает нескольких минут, а количество энергии, высвобождаемой за это время, может достигать миллиардов мегатонн в тротиловом эквиваленте. Энергию вспышки традиционно определяют в видимом диапазоне электромагнитных волн по произведению площади свечения в линии излучения водорода Нα, характеризующей нагрев нижней хромосферы, на яркость этого свечения, связанную с мощностью источника.

В последние годы часто используют также классификацию, основанную на патрульных однородных измерениях на серии ИСЗ, главным образом GOES[1], амплитуды теплового рентгеновского всплеска в диапазоне энергий 0,5—10 кэВ (с длиной волны 0,5—8 ангстрем). Классификация была предложена в 1970 году Д.Бейкером и первоначально основывалась на измерениях спутников «Solrad»[2]. По этой классификации солнечной вспышке присваивается балл — обозначение из латинской буквы и индекса за ней. Буквой может быть A, B, C, M или X в зависимости от величины достигнутого вспышкой пика интенсивности рентгеновского излучения[3][Комм 1]:

Буква Интенсивность в пике (Вт/м2)
A меньше 10−7
B от 1,0×10−7 до 10−6
C от 1,0×10−6 до 10−5
M от 1,0×10−5 до 10−4
X больше 10−4
Солнечная вспышка 14 декабря 2014 года: выброс отрывается от поверхности.

Индекс уточняет значение интенсивности вспышки и может быть от 1,0 до 9,9 для букв A, B, C, M и более — для буквы X. Так, например, вспышка 12 февраля 2010 года балла M8.3 соответствует пиковой интенсивности 8,3×10−5 Вт/м2. Самой мощной (по состоянию на 2010 год) зарегистрированной с 1976 года[4] вспышке, произошедшей 4 ноября 2003 года, был присвоен балл X28[5], таким образом, интенсивность её рентгеновского излучения в пике составляла 28×10−4 Вт/м2. Следует заметить, что регистрация рентгеновского излучения Солнца, так как оно полностью поглощается атмосферой Земли, стала возможной начиная с первого запуска космического аппарата «Спутник-2» с соответствующей аппаратурой[6], поэтому данные об интенсивности рентгеновского излучения солнечных вспышек до 1957 года полностью отсутствуют.

Измерения в разных диапазонах длин волн отражают разные процессы во вспышках. Поэтому корреляция между двумя индексами вспышечной активности существует только в статистическом смысле, так для отдельных событий один индекс может быть высоким, а второй низким и наоборот.

Солнечные вспышки, как правило, происходят в местах взаимодействия солнечных пятен противоположной магнитной полярности или, более точно, вблизи нейтральной линии магнитного поля, разделяющей области северной и южной полярности. Частота и мощность солнечных вспышек зависят от фазы 11-летнего солнечного цикла.

Последствия

Солнечные вспышки имеют прикладное значение, например, при исследовании элементного состава поверхности небесного тела с разреженной атмосферой или при её отсутствии, выступая в роли возбудителя рентгеновского излучения для рентгенофлуоресцентных спектрометров, установленных на борту космических аппаратов.

Жёсткое ультрафиолетовое и рентгеновское излучение вспышек — основной фактор, ответственный за формирование ионосферы, способный также существенно менять свойства верхней атмосферы: плотность её существенно повышается, что ведёт к быстрому снижению высоты орбиты ИСЗ (до километра в сутки).[источник не указан 2833 дня]

Плазменные облака, выбрасываемые во время вспышек приводят к возникновению геомагнитных бурь, которые определённым образом влияют на технику и биологические объекты[Комм 2].

Прогнозирование

Современный прогноз солнечных вспышек даётся на основе анализа магнитных полей Солнца. Однако магнитная структура Солнца настолько неустойчива, что прогнозировать вспышку даже за неделю не представляется в настоящее время возможным. NASA даёт прогноз на очень короткий срок, от 1 до 3 дней: в спокойные дни на Солнце вероятность сильной вспышки обычно указывается в диапазоне 1—5 %, а в активные периоды она возрастает только до 30—40 %[7].

Самые мощные зафиксированные солнечные вспышки

Измерения мощности солнечных вспышек в рентгеновском диапазоне ведутся с 1975 года при помощи спутников GOES. В таблице ниже приведено 30 самых мощных вспышек c 1975 года, по данным этих спутников[8].

Комментарии

  1. Выбор для классификации вспышек рентгеновского диапазона обусловлен более точной фиксацией процесса: если в оптическом диапазоне даже крупнейшие вспышки увеличивают излучение на доли процентов, то в области мягкого рентгеновского излучения (1 нм) — на несколько порядков, а жёсткое рентгеновское излучение спокойным Солнцем не создаётся вообще и образуется исключительно во время вспышек.
  2. Возникающее переменное магнитное поле наводит дополнительные токи в замкнутых проводящих контурах. В организме человека теоретически можно выделить как минимум два таких контура — система кровообращения и нервная система (см. Земля и Вселенная. — 2009. — № 3.)

Примечания

  1. Энциклопедия Солнца — Солнечные вспышки
  2. Priest, Eric Ronald. Flare classification // Solar flare magnetohydrodynamics. — Gordon and Breach Science Publishers, 1981. — P. 51. — ISBN 0677055307.
  3. Классификация вспышек  (англ.)
  4. Самые мощные зарегистрированные солнечные вспышки  (англ.)
  5. 1 2 Dorman, Lev I. Solar Neutron Event on 4 November, 2003 // Solar Neutrons and Related Phenomena. — Springer, 2010. — P. 310. — ISBN 9789048137367.
  6. Эксперимент на втором искусственном спутнике Земли (Спутник-2)
  7. Богачёв С. А., Кириченко А. С. Солнечные вспышки // Земля и Вселенная. — 2013. — № 5. — С. 3—15. — ISSN 0044-3948.
  8. Solar Flares: Solar X-ray Flares from the GOES satellite 1975 to present and from the SOLRAD satellite 1968-1974
  9. Тесис - 6 сентября 2017 года

Ссылки