Гипотенуза: различия между версиями
[непроверенная версия] | [отпатрулированная версия] |
Нет описания правки Метки: добавление ссылки с мобильного устройства из мобильной версии |
Сорахеку (обсуждение | вклад) отклонено последнее 1 изменение (31.129.244.196) |
||
Строка 1: | Строка 1: | ||
[[Файл:Right triangle |
[[Файл:Right triangle with notations.svg|200px|frame|right|Прямоугольный треугольник и его гипотенуза ''(c)'', а также [[катет]]ы ''a'' и ''b'']] |
||
'''Гипотенуза''' ({{lang-el|ὑποτείνουσα}}, натянутая<ref>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, с. 26.</ref>) — самая длинная сторона [[прямоугольный треугольник|прямоугольного треугольника]], противоположная [[прямой угол|прямому углу]]. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью [[Теорема Пифагора|теоремы Пифагора]]: [[квадрат]] длины гипотенузы равен сумме квадратов длин [[катет]]ов. |
'''Гипотенуза''' ({{lang-el|ὑποτείνουσα}}, натянутая<ref>''Александрова Н. В.'' Математические термины.(справочник). М.: Высшая школа, 1978, с. 26.</ref>) — самая длинная сторона [[прямоугольный треугольник|прямоугольного треугольника]], противоположная [[прямой угол|прямому углу]]. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью [[Теорема Пифагора|теоремы Пифагора]]: [[квадрат]] длины гипотенузы равен сумме квадратов длин [[катет]]ов. |
Версия от 16:48, 30 июня 2018
Гипотенуза (греч. ὑποτείνουσα, натянутая[1]) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: квадрат длины гипотенузы равен сумме квадратов длин катетов.
Например, если длина одного из катетов равна 3 м (квадрат его длины равен 9 м²), а длина другого — 4 м (квадрат его длины равен 16 м²), то сумма их квадратов равна 25 м². Длина гипотенузы в этом случае равна квадратному корню из 25 м², то есть 5 м.
Вычисление длины гипотенузы
Длину гипотенузы можно найти, применив теорему Пифагора.
Пусть и — катеты, тогда гипотенузу можно найти по формуле
Если известна длина одного из катетов и угол, отличный от прямого, то можно найти длину гипотенузы по формулам:
- для противолежащего угла , и
- для прилежащего угла .
См. также
Примечания
- ↑ Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, с. 26.