Инфразвук: различия между версиями
[непроверенная версия] | [непроверенная версия] |
отмена правки 96439873 участника 94.180.96.58 (обс.) Метка: отмена |
Нет описания правки |
||
Строка 24: | Строка 24: | ||
| изобр2 = View of Infrasound Station Array - Flickr - The Official CTBTO Photostream.jpg |
| изобр2 = View of Infrasound Station Array - Flickr - The Official CTBTO Photostream.jpg |
||
| ширина2 = |
| ширина2 = |
||
| подпись2 = |
| подпись2 =2 |
||
}} |
}} |
||
;Природные источники |
;Природные источники |
Версия от 18:06, 12 декабря 2018
Инфразву́к (от лат. infra — ниже, под) — звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16—20'000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десятки секунд.
Характеристики инфразвука
Инфразвук подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды[1]:
- инфразвук имеет гораздо большие амплитуды колебаний в сравнении с равномощным слышимым человеком звуком;
- инфразвук гораздо дальше распространяется в воздухе, поскольку поглощение инфразвука атмосферой незначительно;
- благодаря большой длине волны для инфразвука характерно явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки;
- инфразвук вызывает вибрацию крупных объектов, так как входит в резонанс с ними.
Перечисленные особенности инфразвука затрудняют борьбу с ним, поскольку обычные способы противошумовой борьбы (звукопоглощение, звукоизоляция, удаление от источника звука) против инфразвука малоэффективны.
Инфразвук, образующийся в море, называют одной из возможных причин появления «летучих голландцев» — судов, покинутых экипажем в открытом море в ситуации, когда физической опасности судну нет[2] (см. Бермудский треугольник, Корабль-призрак).
Источники инфразвука
- Природные источники
Инфразвук генерируется планетарной корой при землетрясениях, ударах молний, при сильном ветре (инфразвуковой аэродинамический шум) во время бурь и ураганов (в последнем случае регистрация инфразвука, в том числе нарастание инфразвукового фона, — верный признак приближения шторма. В частности прибрежные сухопутные и морские животные уходят в глубь суши и воды соответственно, заслышав нарастающий инфразвуковой шум и следовательно ожидая приближение шторма)[8].
При помощи инфразвука общаются между собой киты и слоны. Инфразвук был зарегистрирован и при взрыве Челябинского метеорита в 2013 г. инфразвуковыми станциями систем обнаружения ядерных взрывов по всей Земле[9].
- Техногенные источники
Техногенный инфразвук генерируется разнообразным оборудованием при колебаниях поверхностей больших размеров, мощными турбулентными потоками жидкостей и газов, при ударном возбуждении конструкций, вращательном и возвратно-поступательном движении больших масс. Основными техногенными источниками инфразвука являются тяжёлые станки, ветрогенераторы, вентиляторы, электродуговые печи, поршневые компрессоры, турбины, виброплощадки, сабвуферы, водосливные плотины, реактивные двигатели, судовые двигатели. Кроме того, инфразвук возникает при наземных, подводных и подземных взрывах.
Распространение инфразвука
Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень большие расстояния, и инфразвук может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. (Последнее может быть использовано в контрбатарейной борьбе.) Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды, геодезического зондирования земной коры с дневной поверхности.
Физиологическое действие инфразвука
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
Физиологическое действие инфразвука на живые существа (в том числе человека) зависит только от его спектральных, временных и мощностных характеристик и не зависит от того, на открытом пространстве или в помещении находится живой объект воздействия.
Патогенное действие инфразвука заключается в повреждении нервной системы (в частности головного мозга), органов эндокринной системы и внутренних органов вследствие развития тканевой гипоксии из-за ликвор-гемодинамических и микроциркуляторных нарушений.
При 180—190 дБ действие инфразвука смертельно вследствие разрыва лёгочных альвеол. Другие зоны интенсивных кратковременных воздействий вызывают синдром резко выраженного инфразвукового дискомфорта, предел переносимости которого наблюдается при 154 дБ. Исследования показали, что низкочастотные акустические колебания, в том числе и инфразвуковые, продолжительностью от 25 с до 2 мин с удельным звуковым давлением от 145 до 150 дБ в диапазоне частот от 1 до 100 Гц, вызывали у испытуемых ощущение вибрации грудной стенки, сухость в полости рта, нарушение зрения, головные боли, головокружение, тошноту, кашель, удушье, беспокойство в области подреберий, звон в ушах, модуляцию звуков речи, боли при глотании и некоторые другие признаки нарушений в деятельности организма[10].
Обнаружение и регистрация инфразвука
Обнаружение и регистрация инфразвука представляют определённые трудности в силу того, что из-за низкой частоты колебаний волны имеют многометровую длину и, представляя собой упругие механические колебания среды распространения, легко смешиваются с механическими колебаниями не инфразвуковой природы. Таким образом датчики инфразвука требуют защиты от наводимых ветром помех и других возмущений от близкорасположенных объектов. При этом сам инфразвук может быть зафиксирован за многие километры от его источника.
Для обнаружения инфразвука могут быть использованы устройства, основанные на принципе резонансного вибратора (струны, рупоры, трубы). Недостатком таких устройств является узкий диапазон обнаруживаемых ими частот, совпадающих с их собственной резонансной частотой и огромные многометровые размеры, которые должны равняться или быть кратным длинам обнаруживаемых волн. Преимуществом является высокая чувствительность и КПД.
На практике для обнаружения инфразвуковых волн используют в основном компактные датчики, преобразующие акустические колебания в электрические сигналы с их дальнейшим усилением и обработкой средствами электроники[11][7][12]:
- низкочастотные конденсаторные микрофоны свободного поля (для высокочастотного инфразвука от 0,5 Гц и выше, к примеру 40AZ - ½”, BSWA MP-201 и др.). Так как ЭДС микрофонов связана не с амплитудой движения их чувствительной мембраны, а с ускорением её движения, то при низкочастотном инфразвуке (одно колебание за несколько секунд) ЭДС в капсюлях микрофонов практически отсутствует, из-за чего низкочастотный инфразвук невозможно регистрировать микрофонами физически;
- микробарометры (для низкочастотного инфразвука). Так как инфразвук является упругими колебаниями среды распространения, представляющими собой чередующиеся зоны сжатия-разрежения, то периодическое изменение давления (с периодичностью 1 колебание в секунды и минуты) по фронту его распространения возможно зафиксировать микробарометрами. Высокочастотный же инфразвук микробарометрами невозможно фиксировать из-за их реактивности (не успевают реагировать на столь быстрые незначительные изменения давления).
Компактные датчики инфразвука применяются в инфразвуковых станциях обнаружения и мониторинга за ядерными взрывами, в системах раннего оповещения о природных катаклизмах (бури, цунами), в шумомерах-анализаторах.
Генераторы инфразвука
Способы борьбы с инфразвуком
Мифы об инфразвуке
В разделе не хватает ссылок на источники (см. рекомендации по поиску). |
В ряде кино- и телефильмов активно эксплуатируется тема инфразвукового оружия, которое физически вполне возможно, однако при его описании сценаристы попадают впросак, поскольку слабо или вообще не знакомы с физикой излучения и приёма волн, в т. ч. акустических. Например, в эпизоде «Крысобой» телесериала «След» фигурирует носимый преступником автономный компактный направленный (т. е. безопасный для оператора) излучатель инфразвуковых волн, встроенный в корпус компьютера-планшета, из-за которого гибнут несколько человек.
Однако такое устройство нереализуемо вследствие физических причин:[источник не указан 2756 дней] для частоты 7 Гц длина инфразвуковой волны составляет около 47 м. Величину не менее порядка этого значения должен иметь линейный размер акустического излучателя для хорошей её генерации[13]. Причём если предположить, что каким-либо образом излучатель инфразвука размером с носимый в руках планшет (линейным размером 25-30 см, много меньшим длины волны в 47 м) способен генерировать волну с интенсивностью, достаточной для летального воздействия на организм человека (например за счёт направляемой в него большой мощности), то исходя из фундаментальных свойств излучения волн его действие будет всенаправленным[14], и первой жертвой станет сам оператор такого устройства[источник не указан 2756 дней]. Кроме того, на настоящем этапе развития техники обеспечение генерирования инфразвуковых волн с достаточной для летального действия энергией является серьёзной технической проблемой[источник не указан 2756 дней]. В качестве реализуемого на сегодняшний день источника такого акустического излучения[источник не указан 2756 дней] предполагается использование мощных авиационных реактивных двигателей с резонаторами[15], что снова исключает возможность переноса и использования такого устройства одним человеком[источник не указан 2756 дней].
Примечания
- ↑ Глава 13. Инфразвук, Н. Ф. Измеров, В. Ф. Кириллов. Гигиена труда / Учебник — М.: ГЭОТАР-Медиа, 2010 г. — 592 c.
- ↑ Мезенцев В. А. В тупиках мистики. М.: Московский рабочий, 1987.
- ↑ Cебе доверяй, а других проверяй, Михайлов В. Статья, газета «Военно-промышленный курьер», № 8 (124), 01.03.2006 г.
- ↑ О предварительных результатах, полученных на инфразвуковой станции «Торы», Сорокин А.Г. Научная статья, журнал «Солнечно-земная физика», № 22, 2013 г. С. 77—80. УДК: 550.34.034. Изд.: «Институт солнечно-земной физики Сибирского отделения Российской академии наук» (Иркутск). ISSN: 2412-4737.
- ↑ Мобильные инфразвуковые группы, Статья на сайте Кольского филиала Единой геофизической службы РАН.
- ↑ Новая инфразвуковая станция открылась в ВКО, Алманов Р. 10.08.2016 г. Atameken Business Channel.
- ↑ 1 2 Инфразвуковые группы, Статья на сайте Кольского филиала Единой геофизической службы РАН.
- ↑ Инфразвук. Живые предвестники беды, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
- ↑ Инфразвуковые микрофоны учатся слушать падения небольших астероидов, 24.09.2014 г. Иллюстрированный блог со ссылками на ВП:АИ.
- ↑ Научные основы регламентации инфразвука в медицине труда (медико-биологические аспекты), Куралесин Н. А. / Автореферат диссертации на соискание учёной степени доктора медицинских наук. Москва, РАМН, НИИ медицины труда — 1997 г.
- ↑ Инфразвук служит человеку, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
- ↑ «Голос» вулканов похож на звук реактивных двигателей, 09.04.2009 г. Статья. МИА «Россия сегодня».
- ↑ § 52. Условия хорошего излучения звука, Ландсберг Г.С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. - 656 c. Стр. 134-135.
- ↑ § 42. Направленное излучение Ландсберг Г.С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. - 656 c. Стр. 112-114.
- ↑ Глава 11 / 11.4. Инфразвуковое оружие — В. В. Мясников. Защита от оружия массового поражения / Изд. 2, М.: «Воениздат», 1989 г.
См. также
- Инфразвуковое поле
- Инфразвуковое оружие
- Волны Рэлея
- Волны Лява
- Сейсмологическая станция
- Эффект Доплера
- Ультразвук
- Гиперзвук
- Фералиминальный ликантропизатор
- Сейсмометр
- Виброметр
Литература
- Сокол Г. И. «Особенности акустических процессов в инфразвуковом диапазоне частот». — Днепропетровск: Проминь, 2000. — 143 с. (обзор 803 источников литературы).
- Боенко И. В., Фрайман Б. Я. Колебания сосудистой стенки при действии инфразвука. Воронеж, 1983 г., стр. 1-8. Рукопись депонирована во ВНИИМИ 16.09.83. №Д-6783.
- Фрайман Б. Я.,Безруков В. Е. Условия, при которых осуществляется прямое действие инфразвука на стенку кровеносного сосуда. Воронеж, 1983 г. стр. 1-13. Рукопись депонирована во ВНИИТИ 13.01.83г. № 6748-83
- Жуков А. И., Иванников А. Н., Фрайман Б. Я. О необходимости изучения пространственной структуры звукового поля при оценке действия низкочастотного шума. «Борьба с шумом и звуковой вибрацией», Москва, 1989 г., стр 53-59.
- Жуков А. И., Иванников А.Н, Ларюков А. С., Нюнин Б. Н.,Павлов В. И., Фрайман Б. Я. Определение аномально активной зоны вредного действия инфразвуковых шумов в жилых и административных помещениях. «Проблемы акустической экологии», Ленинград, Стройиздат, 1990 г. стр. 13-21.
- Fraiman B., Ivannikov A., Zhukov A. On the influence of infranoise fildes on humanus. «6-th Internacional Meeting on Low friguence Noise and Vibracion». 4-6 September 1991. Leiden, pp. 46–56.
- Fraiman B., Voronin A., Fraiman E. The alternative mechanism of the infrasound influence on organism."Noise and Man −93. 6-th Internationale Congress. Nice,France,1993.Vol 2, pp 501—504.
- Fraiman B. Mechanism of the infrasound effect in transport means. «Transport Noise — 94». St-Petersburg, Russia,1994,pp 29–32.
- Санитарные нормы: СН 2.2.4/2.1.8.583-96 «Физические факторы производственной среды. Физические факторы окружающей природной среды. Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки». — Утверждены Постановлением Госкомсанэпиднадзора РФ от 31.10.1996 г. № 52.
Ссылки
В статье есть список источников, но не хватает сносок. |
В другом языковом разделе есть более полная статья Infrasound (англ.). |