Лента Мёбиуса: различия между версиями
[отпатрулированная версия] | [непроверенная версия] |
Illustr (обсуждение | вклад) |
→Искусство и технология: обновление |
||
Строка 66: | Строка 66: | ||
В 1987 году советский джазовый пианист [[Чижик, Леонид Аркадьевич|Леонид Чижик]] записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция. |
В 1987 году советский джазовый пианист [[Чижик, Леонид Аркадьевич|Леонид Чижик]] записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция. |
||
В 2019 году в фильме Мстители 4. Лента Мебиуса используется Тони Старком(самым умным человеком) в путешествии во времени. |
|||
Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса. |
Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса. |
Версия от 12:15, 1 мая 2019
Ле́нта Мёбиуса (лист Мёбиуса, петля́ Мёбиуса) — топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное трёхмерное евклидово пространство .
Считается, что лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году, хотя похожая структура изображена на римской мозаике III века нашей эры. Модель ленты Мёбиуса может легко быть сделана: для этого надо взять достаточно длинную бумажную полоску и склеить противоположные концы полоски, предварительно перевернув один из них. В трёхмерном евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.
Эйлерова характеристика листа Мёбиуса равна нулю.
Уравнения
Одним из способов представления листа Мёбиуса как подмножества является параметризация:
где и . Эти формулы задают ленту Мёбиуса ширины 1, чья центральная окружность имеет радиус 1, лежит в плоскости с центром в . Параметр пробегает вдоль ленты, в то время как задает расстояние от края.
В цилиндрических координатах неограниченная версия листа Мёбиуса может быть представлена уравнением
где функция логарифма имеет произвольное основание.
Свойства
- Граница листа Мёбиуса состоит из одной замкнутой кривой.
- Топологически лист Мёбиуса может быть определен как факторпространство квадрата по отношению эквивалентности для .
- Лист Мёбиуса — это также пространство нетривиального расслоения над окружностью со слоем отрезок.
- Ленту Мёбиуса возможно поместить в с границей, являющейся идеальной окружностью. Один из способов — применить стереографическую проекцию к бутылке Клейна, вложенной в трёхмерную сферу. Идея состоит в следующем: пусть будет единичным кругом в плоскости в . Соединив антиподные точки на (то есть точки под углами и ) дугой круга, получим, что для между и дуги лежат выше плоскости , а для других — ниже (причём в двух местах дуги лежат в плоскости ).[источник не указан 3303 дня]
- Тем не менее любой диск, который приклеивается к граничной окружности, неизбежно пересечёт ленту Мёбиуса.
- Примером вложения листа Мебиуса в является поверхность, заданная уравнением
- Здесь параметр изменяется от 0 до . Границей этой поверхности является окружность . При стереографической проекции получается вложение в с границей, в точности являющейся окружностью.
Открытые вопросы
- Каково минимальное такое, что из прямоугольника с меньшей стороной 1 и большей стороной k можно свернуть несамопересекающуюся ленту Мёбиуса (бумагу мять не разрешается)? Доказанная оценка снизу — , сверху — [1].
- Существует ли формула, описывающая лист Мёбиуса, получающийся путём складывания плоского листа бумаги? Вышеуказанные формулы описывают поверхность, которую нельзя сложить из листа бумаги, так как она имеет отрицательную кривизну; спрашивается, можно ли аналогичным образом описать поверхность нулевой кривизны?[2]
- Сложнее найти форму, которая при этом минимизирует упругую энергию изгиба. Решение этой задачи, впервые поставленной Садовским (M. Sadowsky) в 1930 году, было опубликовано в 2007 году[3]. Однако решение не описывается алгебраической формулой, и маловероятно, что такая формула вообще существует. Чтобы найти пространственную равновесную форму бумажной ленты Мёбиуса, необходимо решить краевую задачу для системы дифференциально-алгебраических уравнений[англ.].
Если ленту разрезать
- Если разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (закрученная на полный оборот) лента. Это свойство ленты Мёбиуса используется в старинном фокусе под названием «афганские ленты»[4] (англ. The Afghan Bands) с 1904 года[5], его также описывают Норберт Винер в книге I Am a Mathematician (1956)[6] и Мартин Гарднер в книге Mathematics, Magic and Mystery (1956), последний также утверждает, что самая ранняя ссылка на использование ленты Мёбиуса для фокусов относится к 1882 году[7]. Если получившуюся ленту разрезать вдоль посередине, получаются две такие ленты, намотанные друг на друга.
- Если разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более короткая лента Мёбиуса, другая — длинная лента с двумя полуоборотами[8].
- Другие комбинации лент могут быть получены из лент с двумя или более полуоборотами в них. Например, если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.
Искусство и технология
Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных — «Лист Мёбиуса II»[9], показывает муравьёв, ползающих по поверхности ленты Мёбиуса.
Лист Мёбиуса является эмблемой серии научно-популярных книг «Библиотечка „Квант“». Он также постоянно встречается в научной фантастике, например, в рассказе Артура Кларка «Стена темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщённым листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (например, «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе М. Клифтона «На ленте Мёбиуса».
Лента Мёбиуса используется как способ перемещения в пространстве и времени Гарри Кифа, главного героя романа Брайана Ламли «Некроскоп».
Лента Мёбиуса играет важную роль в фантастическом романе Р. Желязны «Двери в песке».
В книге Е. Наумова «Полураспад» (1989 год) интеллигент-алкоголик путешествует по стране, становясь на ленту Мёбиуса.
С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея Шепелёва «Echo»[10]. Из аннотации к книге: «„Echo“ — литературная аналогия кольца Мёбиуса: две сюжетные линии — „мальчиков“ и „девочек“ — переплетаются, перетекают друг в друга, но не пересекаются».
Лента Мёбиуса также встречается в эссе Харуки Мураками «Облади Облада» из книги-сборника «Радио Мураками», выпущенного в 2010 году, где лента Мёбиуса образно сравнивается с бесконечностью.
В визуальной новелле CHARON «Makoto Mobius» главный герой Ватаро пытается спасти одноклассницу от смерти, используя магический артефакт — ленту Мёбиуса.
В 1987 году советский джазовый пианист Леонид Чижик записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.
В 2019 году в фильме Мстители 4. Лента Мебиуса используется Тони Старком(самым умным человеком) в путешествии во времени.
Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.
Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера, выполненная в виде ленты Мёбиуса, будет работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид ленты Мёбиуса для увеличения её ресурса.
Также над входом в институт ЦЭМИ РАН находится мозаичный горельеф «Лента Мёбиуса» работы архитектора Леонида Павлова[11] в соавторстве с художниками Э. А. Жареновой и В. К. Васильцовым (1976)[12].
Лента Мёбиуса и знак бесконечности
Многие считают, что лист Мёбиуса является прародителем символа бесконечности. Однако по имеющимся историческим сведениям символ стал использоваться для обозначения бесконечности за два столетия до открытия ленты Мёбиуса[13] (см. Символ бесконечности).
Вариации и обобщения
- Близкой односторонней поверхностью является бутылка Клейна. Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.
- Другое похожее многообразие — проективная плоскость. Если проколоть отверстие в проективной плоскости, тогда то, что останется, будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость.
См. также
- Мёбиус, Август Фердинанд
- Бутылка Клейна
- Резистор Мёбиуса
- «Лист Мёбиуса» (рассказ)
- «Лист Мёбиуса» (фильм)
Примечания
- ↑ Фукс Д. Лента Мёбиуса. Вариации на старую тему // «Квант», № 1, 1979.
- ↑ Randrup T., Rogen P. (1996). "Sides of the Möbius strip". Archiv der Mathematik. 66: 511—521.
- ↑ Starostin. E. L., van der Heijden G. H. M. (2007). "The shape of a Möbius strip". Nature Materials. doi:10.1038/nmat1929.
- ↑ Гарднер М. Профессор, у которого не было ни одной стороны. Примечания автора // Наука и жизнь. — 1977. — № 5. — С. 127.
- ↑ Professor Hoffmann. Later Magic. — New York, London: E. P. Dutton & Company, George Routledge & Sons, 1904. — P. 471-473.
- ↑ Norbert Wiener. I Am a Mathematician. — Garden City, New York: Doubleday & Company, 1956. — P. 26-27. В русском переводе: Норберт Винер. Я — математик / Пер. с англ. Ю. С. Родман. — 2-е изд. — М.: Наука, 1967. — С. 19—20.
- ↑ Martin Gardner. Mathematics, Magic and Mystery. — New York: Dover Publications, 1956. — P. 70-73.
- ↑ Кордемский Б. А. Топологические опыты своими руками // «Квант», № 3, 1974
- ↑ M.C. Escher — Möbius Strip II
- ↑ (СПб.: Амфора, 2003)
- ↑ Мастер вычисления
- ↑ Архитектор Мария Серова — о «доме с ухом» Леонида Павлова — The Village — The Village
- ↑ Лента Мёбиуса // Журнал «Weekend» № 10 (106) от 20.03.2009
Литература
- Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии.— М.: Наука, 1989.
- Гарднер М. Математические чудеса и тайны.— М.: Наука, 1978.
Ссылки
В другом языковом разделе есть более полная статья Möbius strip (англ.). |