Лента Мёбиуса: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Строка 66: Строка 66:


В 1987 году советский джазовый пианист [[Чижик, Леонид Аркадьевич|Леонид Чижик]] записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.
В 1987 году советский джазовый пианист [[Чижик, Леонид Аркадьевич|Леонид Чижик]] записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.

В 2019 году в фильме Мстители 4. Лента Мебиуса используется Тони Старком(самым умным человеком) в путешествии во времени.


Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.
Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.

Версия от 12:15, 1 мая 2019

Лента Мёбиуса
Римская мозаика III века нашей эры с изображением кольца, свернутого как лента Мёбиуса, мюнхенская Глиптотека

Ле́нта Мёбиуса (лист Мёбиуса, петля́ Мёбиуса) — топологический объект, простейшая неориентируемая поверхность с краем, односторонняя при вложении в обычное трёхмерное евклидово пространство .

Считается, что лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году, хотя похожая структура изображена на римской мозаике III века нашей эры. Модель ленты Мёбиуса может легко быть сделана: для этого надо взять достаточно длинную бумажную полоску и склеить противоположные концы полоски, предварительно перевернув один из них. В трёхмерном евклидовом пространстве существуют два типа полос Мёбиуса в зависимости от направления закручивания: правые и левые.

Эйлерова характеристика листа Мёбиуса равна нулю.

Уравнения

Параметрическое описание листа Мёбиуса
Чтобы превратить квадрат в лист Мёбиуса, соедините края, помеченные буквой A, так, чтобы направления стрелок совпали

Одним из способов представления листа Мёбиуса как подмножества является параметризация:

где и . Эти формулы задают ленту Мёбиуса ширины 1, чья центральная окружность имеет радиус 1, лежит в плоскости с центром в . Параметр пробегает вдоль ленты, в то время как задает расстояние от края.

В цилиндрических координатах неограниченная версия листа Мёбиуса может быть представлена уравнением

где функция логарифма имеет произвольное основание.

Свойства

  • Граница листа Мёбиуса состоит из одной замкнутой кривой.
  • Топологически лист Мёбиуса может быть определен как факторпространство квадрата по отношению эквивалентности для .
  • Лист Мёбиуса — это также пространство нетривиального расслоения над окружностью со слоем отрезок.
  • Ленту Мёбиуса возможно поместить в с границей, являющейся идеальной окружностью. Один из способов — применить стереографическую проекцию к бутылке Клейна, вложенной в трёхмерную сферу. Идея состоит в следующем: пусть будет единичным кругом в плоскости в . Соединив антиподные точки на (то есть точки под углами и ) дугой круга, получим, что для между и дуги лежат выше плоскости , а для других  — ниже (причём в двух местах дуги лежат в плоскости ).[источник не указан 3303 дня]
    • Тем не менее любой диск, который приклеивается к граничной окружности, неизбежно пересечёт ленту Мёбиуса.
  • Примером вложения листа Мебиуса в является поверхность, заданная уравнением
Здесь параметр изменяется от 0 до . Границей этой поверхности является окружность . При стереографической проекции получается вложение в с границей, в точности являющейся окружностью.

Открытые вопросы

  1. Каково минимальное такое, что из прямоугольника с меньшей стороной 1 и большей стороной k можно свернуть несамопересекающуюся ленту Мёбиуса (бумагу мять не разрешается)? Доказанная оценка снизу — , сверху — [1].
  2. Существует ли формула, описывающая лист Мёбиуса, получающийся путём складывания плоского листа бумаги? Вышеуказанные формулы описывают поверхность, которую нельзя сложить из листа бумаги, так как она имеет отрицательную кривизну; спрашивается, можно ли аналогичным образом описать поверхность нулевой кривизны?[2]
    • Сложнее найти форму, которая при этом минимизирует упругую энергию изгиба. Решение этой задачи, впервые поставленной Садовским (M. Sadowsky) в 1930 году, было опубликовано в 2007 году[3]. Однако решение не описывается алгебраической формулой, и маловероятно, что такая формула вообще существует. Чтобы найти пространственную равновесную форму бумажной ленты Мёбиуса, необходимо решить краевую задачу для системы дифференциально-алгебраических уравнений[англ.].

Если ленту разрезать

Разрезание ленты Мёбиуса на три части
  • Если разрезать ленту вдоль по линии, равноудалённой от краёв, вместо двух лент Мёбиуса получится одна длинная двухсторонняя (закрученная на полный оборот) лента. Это свойство ленты Мёбиуса используется в старинном фокусе под названием «афганские ленты»[4] (англ. The Afghan Bands) с 1904 года[5], его также описывают Норберт Винер в книге I Am a Mathematician (1956)[6] и Мартин Гарднер в книге Mathematics, Magic and Mystery (1956), последний также утверждает, что самая ранняя ссылка на использование ленты Мёбиуса для фокусов относится к 1882 году[7]. Если получившуюся ленту разрезать вдоль посередине, получаются две такие ленты, намотанные друг на друга.
  • Если разрезать ленту Мёбиуса, отступая от края приблизительно на треть её ширины, то получаются две ленты, одна — более короткая лента Мёбиуса, другая — длинная лента с двумя полуоборотами[8].
  • Другие комбинации лент могут быть получены из лент с двумя или более полуоборотами в них. Например, если разрезать ленту с тремя полуоборотами, то получится лента, завитая в узел трилистника. Разрез ленты с дополнительными оборотами даёт неожиданные фигуры, названные парадромными кольцами.

Искусство и технология

Международный символ переработки представляет собой лист Мёбиуса
«Лента Мёбиуса» над входом в институт ЦЭМИ РАН (1976, архитектор Леонид Павлов, художники Э. А. Жаренова и В. К. Васильцов)

Лист Мёбиуса служил вдохновением для скульптур и для графического искусства. Эшер был одним из художников, кто особенно любил его и посвятил несколько своих литографий этому математическому объекту. Одна из известных — «Лист Мёбиуса II»[9], показывает муравьёв, ползающих по поверхности ленты Мёбиуса.

Лист Мёбиуса является эмблемой серии научно-популярных книг «Библиотечка „Квант“». Он также постоянно встречается в научной фантастике, например, в рассказе Артура Кларка «Стена темноты». Иногда научно-фантастические рассказы (вслед за физиками-теоретиками) предполагают, что наша Вселенная может быть некоторым обобщённым листом Мёбиуса. Также кольцо Мёбиуса постоянно упоминается в произведениях уральского писателя Владислава Крапивина, цикл «В глубине Великого Кристалла» (например, «Застава на Якорном Поле. Повесть»). В рассказе «Лист Мёбиуса» автора А. Дж. Дейча, бостонское метро строит новую линию, маршрут которой становится настолько запутанным, что превращается в ленту Мёбиуса, после чего на этой линии начинают исчезать поезда. По мотивам рассказа был снят фантастический фильм «Мёбиус» режиссёра Густаво Москера. Также идея ленты Мёбиуса используется в рассказе М. Клифтона «На ленте Мёбиуса».

Лента Мёбиуса используется как способ перемещения в пространстве и времени Гарри Кифа, главного героя романа Брайана Ламли «Некроскоп».

Лента Мёбиуса играет важную роль в фантастическом романе Р. Желязны «Двери в песке».

В книге Е. Наумова «Полураспад» (1989 год) интеллигент-алкоголик путешествует по стране, становясь на ленту Мёбиуса.

С лентой Мёбиуса сравнивается течение романа современного русского писателя Алексея Шепелёва «Echo»[10]. Из аннотации к книге: «„Echo“ — литературная аналогия кольца Мёбиуса: две сюжетные линии — „мальчиков“ и „девочек“ — переплетаются, перетекают друг в друга, но не пересекаются».

Лента Мёбиуса также встречается в эссе Харуки Мураками «Облади Облада» из книги-сборника «Радио Мураками», выпущенного в 2010 году, где лента Мёбиуса образно сравнивается с бесконечностью.

В визуальной новелле CHARON «Makoto Mobius» главный герой Ватаро пытается спасти одноклассницу от смерти, используя магический артефакт — ленту Мёбиуса.

В 1987 году советский джазовый пианист Леонид Чижик записал альбом «Лента Мёбиуса», в который вошла и одноимённая композиция.

В 2019 году в фильме Мстители 4. Лента Мебиуса используется Тони Старком(самым умным человеком) в путешествии во времени.

Гоночный трек в одном из эпизодов (7 сезон 14 серия, 11 минута) мультсериала «Футурама» представляет собой ленту Мёбиуса.

Существуют технические применения ленты Мёбиуса. Полоса ленточного конвейера, выполненная в виде ленты Мёбиуса, будет работать дольше, потому что вся поверхность ленты изнашивается равномерно. Также в системах записи на непрерывную плёнку применяются ленты Мёбиуса (чтобы удвоить время записи). Во многих матричных принтерах красящая лента также имеет вид ленты Мёбиуса для увеличения её ресурса.

Также над входом в институт ЦЭМИ РАН находится мозаичный горельеф «Лента Мёбиуса» работы архитектора Леонида Павлова[11] в соавторстве с художниками Э. А. Жареновой и В. К. Васильцовым (1976)[12].

Лента Мёбиуса и знак бесконечности

Многие считают, что лист Мёбиуса является прародителем символа бесконечности. Однако по имеющимся историческим сведениям символ стал использоваться для обозначения бесконечности за два столетия до открытия ленты Мёбиуса[13] (см. Символ бесконечности).

Вариации и обобщения

  • Близкой односторонней поверхностью является бутылка Клейна. Бутылка Клейна может быть получена путём склеивания двух лент Мёбиуса по краям. В обычном трёхмерном евклидовом пространстве сделать это, не создавая самопересечения, невозможно.
  • Другое похожее многообразие — проективная плоскость. Если проколоть отверстие в проективной плоскости, тогда то, что останется, будет листом Мёбиуса. С другой стороны, если приклеить диск к ленте Мёбиуса, совмещая их границы, то результатом будет проективная плоскость.

См. также

Примечания

  1. Фукс Д. Лента Мёбиуса. Вариации на старую тему // «Квант», № 1, 1979.
  2. Randrup T., Rogen P. (1996). "Sides of the Möbius strip". Archiv der Mathematik. 66: 511—521.
  3. Starostin. E. L., van der Heijden G. H. M. (2007). "The shape of a Möbius strip". Nature Materials. doi:10.1038/nmat1929.
  4. Гарднер М. Профессор, у которого не было ни одной стороны. Примечания автора // Наука и жизнь. — 1977. — № 5. — С. 127.
  5. Professor Hoffmann. Later Magic. — New York, London: E. P. Dutton & Company, George Routledge & Sons, 1904. — P. 471-473.
  6. Norbert Wiener. I Am a Mathematician. — Garden City, New York: Doubleday & Company, 1956. — P. 26-27. В русском переводе: Норберт Винер. Я — математик / Пер. с англ. Ю. С. Родман. — 2-е изд. — М.: Наука, 1967. — С. 19—20.
  7. Martin Gardner. Mathematics, Magic and Mystery. — New York: Dover Publications, 1956. — P. 70-73.
  8. Кордемский Б. А. Топологические опыты своими руками // «Квант», № 3, 1974
  9. M.C. Escher — Möbius Strip II
  10. (СПб.: Амфора, 2003)
  11. Мастер вычисления
  12. Архитектор Мария Серова — о «доме с ухом» Леонида Павлова — The Village — The Village
  13. Лента Мёбиуса // Журнал «Weekend» № 10 (106) от 20.03.2009

Литература

  • Фоменко А. Т., Фукс Д. Б. Курс гомотопической топологии.— М.: Наука, 1989.
  • Гарднер М. Математические чудеса и тайны.— М.: Наука, 1978.

Ссылки