Токсин
Токси́н (др.-греч. τοξικός [toxikos] «ядовитый») — яд биологического происхождения. Наука о ядах биологического происхождения — токсинология[1].
Вырабатываются, например, опухолевыми клетками, инфекционными (от лат. inficio «насыщать; заражать») агентами — бактериями, вирусами, грибами (микотоксины) или паразитами, в частности, гельминтами. Обширная группа токсинов вырабатывается растениями и морскими беспозвоночными[2].
Виды токсинов
Бактериальные токсины условно разделяют на экзотоксины и эндотоксины.
По мишени действия токсины разделяют на:
- Гематические яды (Heamotoxic) — яды, затрагивающие кровь.
- Нейротоксины (Neurotoxic) — яды, поражающие нервную систему и мозг.
- Миоксичные яды (Myotoxic) — яды, повреждающие мышцы.
- Геморрагические токсины (Haemorrhaginstoxins) — токсины, которые повреждают кровеносные сосуды и вызывают кровотечение, в частности, воспаление геморроя.
- Гемолитические токсины (Haemolysinstoxins) — токсины, которые повреждают мембраны эритроцитов.
- Нефротоксины (Nephrotoxins) — токсины, которые повреждают почки.
- Кардиотоксины (Cardiotoxins) — токсины, которые повреждают сердце.
- Некротоксины (Necrotoxins) — токсины, которые разрушают ткани, вызывая их омертвление. (некроз)
- Другие токсины
Примеры
-
Афлатоксин B1 — микотоксин, один из представителей афлатоксинов, смертельно опасный токсин, а также сильнейший гепатоканцероген[3]. Продуцируется микроскопическими плесневыми грибами рода Аспергилл (Aspergillus flavus, Aspergillus parasiticus).
-
Сакситоксин (STX), накапливается в съедобных морских моллюсках (мидии, морское ушко, устрицы, итд.), которые в свою очередь питаются продуцентами — динофлагеллятами (Gonyaulax catenella, Alexandrium sp., Gymnodinium sp., Pyrodinium sp.) и цианобактериями (Anabaena sp., Aphanizomenon spp., Cylindrospermopsis sp., Lyngbya sp., Planktothrix sp.). Сильнейший яд небелковой природы с ярко выраженным нервно-паралитическим воздейстием, ЛД50 ~5,7 мкг/кг перорально для человека (так, одна мелкая мидия может содержать сакситоксин в дозе, достаточной чтобы убить 50 человек[4]). Селективный блокатор потенциал-зависимых натриевых каналов[5] (сходный по действию с тетродотоксином), тем самым поражает ЦНС.
-
Гипоглицин A — фитотоксин, содержится в незрелых плодах и семенах Аки (Blighia sapida) и личи (Litchi chinensis)[6]. Высокотоксичен, вызывает специфическое заболевание Ямайскую рвотную болезнь, сопровождаемое сильнейшей интоксикацией и гипогликемией[7].
-
Батрахотоксин (сокр. BTX) — токсин, небелковой природы (стероидная структура), чрезвычайно токсичен и смертельно опасен, сильнейший нейротоксин, поражает органы дыхания, сердце, ЦНС за счёт стойкого и необратимого взаимодействия на натриевые потенциал-зависимые каналы, инактивируя их закрытие. Токсин легко проникает через кожу и слизистые оболочки. Впервые обнаружен в кожном секрете тропических лягушек из рода листолазов. ЛД50 = 2 мкг/кг[8][9].
См. также
Примечания
- ↑ Орлов Б. Н., Гелашвили Д. Б. Зоотоксинология (ядовитые животные и их яды). — Учеб. пособие для студентов вузов по спец. «Биология». — М. : Высшая школа, 1985. — 280 с.
- ↑ Введение в проблемы биохимической экологии. — М. : Наука, 1990. — 288 с. — ISBN 5-02-004062-2.
- ↑ Ilic Z., Crawford D., Vakharia D., Egner P. A., Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. (англ.) // Toxicology and applied pharmacology. — 2010. — Vol. 242, no. 3. — P. 241—246. — doi:10.1016/j.taap.2009.10.008. — PMID 19850059.
- ↑ Страйер Л. Биохимия. — М.: Мир, 1985. — Т. 3. — С. З24. — 400 с.
- ↑ Huot, R. I.; Armstrong, D. L.; Chanh, T. C. Protection against nerve toxicity by monoclonal antibodies to the sodium channel blocker tetrodotoxin (англ.) // Journal of Clinical Investigation?! : journal. — 1989. — June (vol. 83, no. 6). — P. 1821–1826. — doi:10.1172/JCI114087. — PMID 2542373. — PMC 303901.
- ↑ Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: a case-control study . The Lancet.
- ↑ Нельсон Д., Кокс М. Основы биохимии Ленинджера. — М.: БИНОМ, 2011. — Т. II.
- ↑ Wang, S. Y.; Mitchell, J.; Tikhonov, D. B.; Zhorov, B. S.; Wang, G. K. (2006). "How Batrachotoxin modifies the sodium channel permeation pathway: Computer modeling and site-directed mutagenesis". Mol. Pharmacol. 69 (3): 788—795. doi:10.1124/mol.105.018200. PMID 16354762.
- ↑ Tokuyama, T.; Daly, J.; Witkop, B. (1969). "The structure of batrachotoxin, a steroidal alkaloid from the Colombian arrow poison frog, Phyllobates aurotaenia, and partial synthesis of batrachotoxin and its analogs and homologs". J. Am. Chem. Soc. 91 (14): 3931—3938. doi:10.1021/ja01009a052.