Последовательность

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая Retimuko (обсуждение | вклад) в 18:50, 22 июля 2020 (стиль). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

В математике последовательность — это пронумерованный набор каких-либо объектов, среди которых допускаются повторения, причём порядок объектов имеет значение. Нумерация чаще всего происходит натуральными числами. Более общие случаи см. в разделе Вариации и обобщения.

В данной статье последовательность подразумевается бесконечной; случаи конечной последовательности оговариваются особо.

Примеры

Строгое определение

Пусть задано некоторое множество элементов произвольной природы.

Всякое отображение множества натуральных чисел в заданное множество называется последовательностью[1] (элементов множества ).

Обозначения

Последовательности вида

принято компактно записывать при помощи круглых скобок:

или .

Иногда используются фигурные скобки:

.

Конечные последовательности могут записываться в следующем виде:

.

Также последовательность может быть записана как

,

если функция была определена ранее, или же её обозначение может быть заменено на саму функцию. Например, при последовательность можно записать в виде .

Связанные определения

  • Образ натурального числа , а именно элемент , называется -ым членом последовательности, а порядковый номер члена последовательности — его индексом.
  • Подмножество множества , которое образовано элементами последовательности, называется носителем последовательности: пока индекс пробегает множество натуральных чисел, точка, «изображающая» члены последовательности, «перемещается» по носителю.
  • Подпоследовательностью последовательности называется зависящая от последовательность , где — возрастающая последовательность натуральных чисел. Подпоследовательность можно получить из изначальной последовательности, выкинув из неё некоторые члены.

Замечания

  • Любое отображение множества в себя также является последовательностью.

Последовательности в математике

В математике рассматривают различные типы последовательностей:

Практически важные задачи, возникающие при изучении последовательностей:

  • Выяснение вопроса, конечна данная последовательность или бесконечна. Например, на 2020 год известно 51 простое число Мерсенна, но не доказано, что больше таких чисел нет.
  • Поиск закономерностей среди членов последовательности.
  • Поиск аналитической формулы, которая может служить хорошим приближением для -го члена последовательности. Например, для -го простого числа неплохое приближение даёт формула: (существуют и более точные).
  • Прогноз будущих состояний, в первую очередь выяснение вопроса, сходится ли данная последовательность к конечному или бесконечному пределу числовому или не числовому, в зависимости от типа множества

Вариации и обобщения

См. также

Примечания

  1. Последовательность // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 506—507.

Литература