Операционная система
Операцио́нная систе́ма, ОС (англ. operating system) — базовый комплекс компьютерных программ, обеспечивающий управление аппаратными средствами компьютера, работу с файлами, ввод и вывод данных, а также выполнение прикладных программ и утилит.
При включении компьютера операционная система загружается в память раньше остальных программ и затем служит платформой и средой для их работы. Помимо вышеуказанных функций ОС может осуществлять и другие, например, предоставление пользовательского интерфейса, сетевое взаимодействие и т. п.
С 1990-х наиболее распространёнными операционными системами для персональных компьютеров и серверов являются ОС семейства Microsoft Windows и Windows NT, Mac OS и Mac OS X, системы класса UNIX, и Unix‐подобные (особенно GNU/Linux).
Функции
Основные функции (простейшие ОС):
- Загрузка приложений в оперативную память и их выполнение;
- Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода);
- Управление оперативной памятью (распределение между процессами, виртуальная память);
- Управление доступом к данным на энергонезависимых носителях (таких как Жёсткий диск, Компакт-диск и т. д.), как правило с помощью файловой системы;
- Пользовательский интерфейс;
- Сетевые операции, поддержка стека протоколов
Дополнительные функции:
- Параллельное или псевдопараллельное выполнение задач (многозадачность);
- Взаимодействие между процессами: обмен данными, взаимная синхронизация;
- Защита самой системы, а также пользовательских данных и программ от злонамеренных действий пользователей или приложений;
- Разграничение прав доступа и многопользовательский режим работы (аутентификация, авторизация).
Объекты ядра ОС
- Процессы
- Файлы
- События
- Потоки
- Семафоры
- Мьютексы
- Каналы
- Файлы, проецируемые в память (для платформы Win32).
Понятие операционной системы
Существуют две группы определений ОС: «совокупность программ, управляющих оборудованием» и «совокупность программ, управляющих другими программами». Обе они имеют свой точный технический смысл, который, однако, становится ясен только при более детальном рассмотрении вопроса о том, зачем вообще нужны операционные системы.
Есть приложения вычислительной техники, для которых ОС излишни. Напр., встроенные микрокомпьютеры содержатся сегодня во многих бытовых приборах, автомобилях (иногда по десятку в каждом), сотовых телефонах и т. п. Зачастую такой компьютер постоянно исполняет лишь одну программу, запускающуюся по включении. И простые игровые приставки — также представляющие собой специализированные микрокомпьютеры — могут обходиться без ОС, запуская при включении программу, записанную на вставленном в устройство «картридже» или компакт-диске. (Многие встроенные компьютеры и даже некоторые игровые приставки на самом деле работают под управлением своих ОС).
Операционные системы, в свою очередь, нужны, если:
- вычислительная система используется для различных задач, причём программы, исполняющие эти задачи, нуждаются в сохранении данных и обмене ими. Из этого следует необходимость универсального механизма сохранения данных; в подавляющем большинстве случаев ОС отвечает на неё реализацией файловой системы. Современные ОС, кроме того, предоставляют возможность непосредственно «связать» вывод одной программы с вводом другой, минуя относительно медленные дисковые операции;
- различные программы нуждаются в выполнении одних и тех же рутинных действий. Напр., простой ввод символа с клавиатуры и отображение его на экране может потребовать исполнения сотен машинных команд, а дисковая операция — тысяч. Чтобы не программировать их каждый раз заново, ОС предоставляют системные библиотеки часто используемых подпрограмм (функций);
- между программами и пользователями системы необходимо распределять полномочия, чтобы пользователи могли защищать свои данные от чужого взора, а возможная ошибка в программе не вызывала тотальных неприятностей;
- необходима возможность имитации «одновременного» исполнения нескольких программ на одном компьютере (даже содержащем лишь один процессор), осуществляемой с помощью приёма, известного как «разделение времени». При этом специальный компонент, называемый планировщиком, «нарезает» процессорное время на короткие отрезки и предоставляет их поочередно различным исполняющимся программам (процессам);
- наконец, оператор должен иметь возможность, так или иначе, управлять процессами выполнения отдельных программ. Для этого служат операционные среды, одна из которых — оболочка и набор стандартных утилит — является частью ОС (прочие, такие, как графическая операционная среда, образуют независимые от ОС прикладные платформы). Таким образом, современные универсальные ОС можно охарактеризовать прежде всего как
- использующие файловые системы (с универсальным механизмом доступа к данным),
- многопользовательские (с разделением полномочий),
- многозадачные (с разделением времени).
Многозадачность и распределение полномочий требуют определённой иерархии привилегий компонентов самой ОС. В составе ОС различают три группы компонентов:
- ядро, содержащее планировщик; драйверы устройств, непосредственно управляющие оборудованием; сетевую подсистему, файловую систему;
- системные библиотеки и
- оболочку с утилитами.
Большинство программ, как системных (входящих в ОС), так и прикладных, исполняются в непривилегированном («пользовательском») режиме работы процессора и получают доступ к оборудованию (и, при необходимости, к другим ядерным ресурсам, а также ресурсам иных программ) только посредством системных вызовов. Ядро исполняется в привилегированном режиме: именно в этом смысле говорят, что ОС (точнее, её ядро) управляет оборудованием.
Текущая редакция стандарта на ОС содержит определения около тысячи системных вызовов и других библиотечных подпрограмм (часть из которых должна реализоваться только в определённых классах систем; напр., в системах «реального времени») и около 200 команд оболочки и утилит ОС. Стандарт определяет лишь функции вызовов и команд, и не содержит указаний относительно способов их реализации.
Стандарт, кроме этого, определяет способ адресации файлов в системе, локализацию (установки, касающиеся национально-специфических моментов, таких, как язык сообщений или формат даты и времени), совместимый набор символов, синтаксис регулярных выражений, структуру каталогов в файловой системе, формат командной строки и некоторые другие аспекты поведения ОС.
В определении состава ОС значение имеет критерий операциональной целостности (замкнутости): система должна позволять полноценно использовать (включая модификацию) свои компоненты. Поэтому в полный состав ОС включается и набор инструментальных средств (от текстовых редакторов до компиляторов, отладчиков и компоновщиков). Операциональной замкнутостью обладают системы, удовлетворяющие «разработческому» профилю в терминах стандарта.
Эволюция операционных систем и основные идеи
Предшественником ОС следует считать служебные программы (загрузчики и мониторы), а также библиотеки часто используемых подпрограмм, начавшие разрабатываться с появлением универсальных компьютеров 1-го поколения (конец 1940-х годов). Служебные программы минимизировали физические манипуляции оператора с оборудованием, а библиотеки позволяли избежать многократного программирования одних и тех же действий (осуществления операций ввода-вывода, вычисления математических функций и т. п.).
В 1950-60-х годах сформировались и были реализованы основные идеи, определяющие функциональность ОС: пакетный режим, разделение времени и многозадачность, разделение полномочий, реальный масштаб времени, файловые структуры и файловые системы.
Пакетный режим
Необходимость оптимального использования дорогостоящих вычислительных ресурсов привела к появлению концепции «пакетного режима» исполнения программ. Пакетный режим предполагает наличие очереди программ на исполнение, причём ОС может обеспечивать загрузку программы с внешних носителей данных в оперативную память, не дожидаясь завершения исполнения предыдущей программы, что позволяет избежать простоя процессора.
Разделение времени и многозадачность
Уже пакетный режим в своём развитом варианте требует разделения процессорного времени между выполнением нескольких программ.
Необходимость в разделении времени (многозадачности, мультипрограммировании) проявилась ещё сильнее при распространении в качестве устройств ввода-вывода телетайпов (а позднее, терминалов с электронно-лучевыми дисплеями) (1960-е годы). Поскольку скорость клавиатурного ввода (и даже чтения с экрана) данных оператором много ниже, чем скорость обработки этих данных компьютером, использование компьютера в «монопольном» режиме (с одним оператором) могло привести к простою дорогостоящих вычислительных ресурсов.
Разделение времени позволило создать «многопользовательские» системы, в которых один (как правило) центральный процессор и блок оперативной памяти соединялся с многочисленными терминалами. При этом часть задач (таких, как ввод или редактирование данных оператором) могла исполняться в режиме диалога, а другие задачи (такие, как массивные вычисления) — в пакетном режиме.
Разделение полномочий
Распространение многопользовательских систем потребовало решения задачи разделения полномочий, позволяющей избежать возможности модификации исполняемой программы или данных одной программы в памяти компьютера другой (содержащей ошибку или злонамеренно подготовленной) программы, а также модификации самой ОС прикладной программой.
Реализация разделения полномочий в ОС была поддержана разработчиками процессоров, предложивших архитектуры с двумя режимами работы процессора — «реальным» (в котором исполняемой программе доступно всё адресное пространство компьютера) и «защищённым» (в котором доступность адресного пространства ограничена диапазоном, выделенном при запуске программы на исполнение).
Реальный масштаб времени
Применение универсальных компьютеров для управления производственными процессами потребовало реализации «реального масштаба времени» («реального времени») — синхронизации исполнения программ с внешними физическими процессами.
Включение функции реального масштаба времени в ОС позволило создавать системы, одновременно обслуживающие производственные процессы и решающие другие задачи (в пакетном режиме и (или) в режиме разделения времени).
Файловые системы и структуры
Постепенная замена носителей с последовательным доступом (перфолент, перфокарт и магнитных лент) накопителями произвольного доступа (на магнитных диск)
«Unix», стандартизация ОС и POSIX
К концу 1960-х гг. отраслью и научно-образовательным сообществом был создан целый ряд ОС, реализующих все или часть очерченных выше функций. К ним относятся «Atlas» (Манчестерский университет), «CTTS» и «ITSS» (Массачусетский технологический институт (МТИ)), «THE» (Эйндховенский технологический университет), «RS4000» (Университет Орхуса) и др. (всего эксплуатировалось более сотни различных ОС).
Наиболее развитые ОС, такие как «OS/360» (компания «IBM»), «SCOPE» (компания «CDC») и завершённый уже в 1970-х годах «MULTICS» (МТИ и компания «Bell Labs»), предусматривали возможность исполнения на многопроцессорных компьютерах.
Эклектичный характер разработки ОС привёл к нарастанию кризисных явлений, прежде всего, связанных с чрезмерными сложностью и размерами создаваемых систем. ОС были плохо масштабируемыми (более простые не могли использовать все возможности крупных вычислительных систем; более развитые неоптимально исполнялись на малых или не могли исполняться на них вовсе) и тотально несовместимыми между собой, их разработка и совершенствование затягивалась.
Задуманная и реализованная в 1969 году Кеном Томпсоном при участии нескольких коллег (включая Денниса Ричи и Брайана Кернигана), ОС «Unix» («Unix»; первоначально «UNICS», что обыгрывало название «MULTICS») вобрала в себя многие черты более ранних ОС, но обладала целым рядом свойств, отличающих её от большинства предшественниц:
- простая метафорика (два ключевых понятия: вычислительный процесс и файл);
- компонентная архитектура: принцип «одна программа — одна функция» плюс мощные средства связывания различных программ для решения возникающих задач («оболочка»);
- минимизация ядра (кода, выполняющегося в «реальном» («привилегированном») режиме процессора) и количества системных вызовов;
- независимость от аппаратной архитектуры и реализация на машиннонезависимом языке программирования (язык программирования «Си» стал «побочным продуктом» разработки «Unix»);
- унификация файлов.
«Unix», благодаря своему удобству прежде всего в качестве инструментальной среды (среды разработки), была тепло принята сначала в университетах, а затем и в отрасли, получившей прототип единой ОС, которая могла использоваться на самых разных вычислительных системах и, более того, могла быть быстро и с минимальными усилиями перенесена на любую вновь разработанную аппаратную архитектуру.
В конце 70-х годов XX века сотрудники Калифорнийского университета в Беркли внесли ряд усовершенствований в исходные коды UNIX, включая работу с протоколами TCP/IP. Их разработка стала известна под именем BSD — «Berkeley Software Distribution».
Задачу разработать независимую (от авторских прав «Bell Labs») реализацию той же архитектуры поставил и Ричард Столлмен, основатель проекта «GNU».
Благодаря конкурентности реализаций архитектура ОС «Unix» стала вначале фактическим отраслевым стандартом, а затем обрела статус и стандарта юридического — ISO/IEC 9945[1].
ОС, следующие стандарту или опирающиеся на него, называют «POSIX-совместимыми» (чаще встречается словоупотребление «Unix подобные» или «семейство Unix», но оно противоречит статусу торгового знака «Unix», принадлежащего консорциуму «The Open Group» и зарезервированному для обозначения ОС, строго следующих стандарту) благодаря названию стандарта — POSIX. Сертификация на совместимость со стандартом стоит некоторых денег, из-за чего некотрые системы не проходили этот процесс, однако считаются POSIX-совместимыми, просто потому что это так.
К Unix-подобным ОС относятся системы, базирующиеся на последней версии «Unix», выпущенной «Bell Labs» («System V»), на разработках Университета Беркли («FreeBSD», «OpenBSD», «NetBSD»), а также ОС «GNU/Linux», разработанная в части утилит и библиотек проектом «GNU» и в части ядра — сообществом, возглавляемым Линусом Торвальдсом.
Стандартизация ОС гарантирует возможность безболезненной замены самой ОС и/или оборудования при развитии вычислительной системы или сети и дешёвого переноса прикладного программного обеспечения (строгое следование стандарту предполагает полную совместимость программ на уровне исходного текста; из-за профилирования стандарта и его развития некоторые изменения бывают всё же необходимы, но перенос программы между POSIX-совместимыми системами обходится на порядки дешевле, чем между альтернативными), а также преемственность опыта пользователей.
Самым заметным эффектом существования этого стандарта стало эффективное разворачивание Интернета в 90-х годах.
«Post Unix» архитектуры ОС
Коллектив, создавший ОС «Юникс», попытался позднее повторить свой успех, обобщив и дополнив исходную концепцию. Таким образом появились ОС «Plan9» и «Inferno», не получившие, впрочем, широкого распространения..
Позднее на основе «Plan9» в Испании были разработаны ОС «Off++» и «Plan B», носящие экспериментальный характер.
К попыткам создать постюниксовскую архитектуру можно также отнести разработку системы программирования и операционной среды «Оберон» в Швейцарском федеральном технологическом институте (ETH Zurich) под руководством проф. Никлауса Вирта.
Примечания
- ↑ Свежая версия ISO/IEC 9945 принята Международной организацией стандартизации (ИСО) в 2003 г.
См. также
- Список операционных систем
- Многозадачность
- Хронология операционных систем
- Операционное окружение
- WebOS
- Аппаратная платформа компьютера
Литература
- Вильям Столлингс. «Операционные системы» = Operating Systems: Internals and Design Principles. — М.: «Вильямс», 2004. — С. 848. — ISBN 0-13-031999-6.
- Деннинг П.Дж., Браун Р. Л. «Операционные системы.» В сб.: «Современный компьютер». — М.: 1986.
- Керниган Брайан и Пайк Роб. «UNIX — универсальная среда программирования». — М., 1992 (классическое введение в открытые ОС, по большей части сохранившее актуальность).
- Отставнов Максим. «Свободные программы и системы в школе». — М., 2003.
- Э. Таненбаум, А. Вудхалл. «Операционные системы: Разработка и реализация.» — СПб.: 2006. — ISBN 5-469-00148-2
- Э. Таненбаум. «Современные операционные системы. 2-е изд.» — СПб.: Питер, 2005. — 1038 с.: ил. ISBN 5-318-00299-4
- Дмитрий Иртегов. «Введение в операционные системы 2-е. изд.» — BHV-СПб, 2007. ISBN 978-5-94157-695-1
- А. Гордеев. «Операционные системы» — СПб.: Питер, 2007. ISBN 978-5-94723-632-3 (учебник для ВУЗов)
- Raymond Eric S. The Art of Unix Programming. — 2003.
- Sobell Mark G. Unix System V. A Practical Guide. 3rd ed. — 1995.
Ссылки
- Операционная система в каталоге ссылок Curlie (dmoz)