Геометрический решатель САПР

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая InternetArchiveBot (обсуждение | вклад) в 10:54, 19 июня 2022 (Спасено источников — 3, отмечено мёртвыми — 0. Сообщить об ошибке. См. FAQ.) #IABot (v2.0.8.8). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Геометрический решатель (англ. Geometric Constraint Solver), решатель геометрических ограничений, геометрический решатель задач в ограничениях — это программная компонента, которая встраивается в САПР и позволяет инженеру точно позиционировать геометрические элементы друг относительно друга.

Двумерные геометрические решатели работают с геометрическими объектами на плоскости, и позволяют создавать двумерные чертежи, а трехмерные геометрические решатели, как правило, используются для сборки из деталей механизмов и других конструкций. Инженер накладывает геометрические ограничения (параллельность, перпендикулярность, совпадение, соосность и пр.) на геометрические объекты (точки, прямые, плоскости, окружности, сферы, и пр.) и после работы решателя получает решение задачи — новые координаты объектов и значения их параметров (таких, как радиусы окружностей или углы конусов), удовлетворяющее ограничения. В случае неразрешимости задачи, геометрический решатель выдает сообщение о несовместности модели. Как правило, геометрические решатели также содержат реализации смежных функций: определения недо- и переопределенности задачи, автогенерации ограничений, движения объектов с сохранением наложенных на них ограничений, и пр.

Методы

Общая схема работы геометрических решателей состоит в генерации системы нелинейных уравнений, которая моделирует геометрические ограничения, наложенные на объекты, и решении этой системы, как правило, с помощью использования итеративных методов, таких как метод Ньютона-Рафсона. Существенное значение для корректности и производительности геометрических решателей имеет способ моделирования.

Для ускорения работы решателей используют различные методы декомпозиции задачи:[1] декомпозиция-рекомбинация,[2][3] древовидная декомпозиция,[4] C-tree decomposition,[5] graph reduction,[6] re-parametrization and reduction,[7] computing fundamental circuits,[8] body-and-cad structure,[9] и witness configuration method.[10]

Некоторые другие методы и подходы включают анализ степеней свободы,[11][12] символьные вычисления,[13] применение систем правил,[14] программирование в ограничениях,[14][15] и генетические алгоритмы.[16]

Системы нелинейных уравнений в основном решают с помощью итерационных методов, на каждой итерации решается линейная задача. Метод Ньютона — Рафсона является одним из самым известных примеров.[14]

Решатель передает информацию дальше геометрическому ядру, которое выполняет построение геометрической модели, используя полученные решателем координаты и параметры объектов.

Приложения и программные реализации

Основной областью применения геометрических решателей являются САПР. Они также используются для решения задач обратной кинеметики, робототехники, архитектурно-конструкторских работ, геометрического моделирования молекул и других прикладных областей.

К геометрическим решателям относятся:

См. также

Примечания

  1. Pascal Mathis, Simon E. B. Thierry. A formalization of geometric constraint systems and their decomposition (англ.).
  2. Christoph M.Hoffman, Andrew Lomonosov, Meera Sitharam. Decomposition Plans for Geometric Constraint Systems, Part I: Performance Measures for CAD (англ.).
  3. Christoph M.Hoffman, Andrew Lomonosov, Meera Sitharam. Decomposition Plans for Geometric Constraint Problems, Part II: New Algorithms (англ.).
  4. Marta Hidalgoa, Robert Joan-Arinyo. h-graphs: A new representation for tree decompositions of graphs (англ.).
  5. Xiao-Shan Gao, Qiang Lin, Gui-Fang Zhang. A C-tree decomposition algorithm for 2D and 3D geometric constraint solving (англ.).
  6. Samy Ait-Aoudia, Sebti Foufou. A 2D geometric constraint solver using a graph reduction method (англ.).
  7. Hichem Barki, Lincong Fang, Dominique Michelucci, Sebti Foufou. Re-parameterization reduces irreducible geometric constraint systems (англ.).
  8. R.Joan-Arinyo, M.Tarrés-Puertas, S.Vila-Marta. Decomposition of geometric constraint graphs based on computing fundamental circuits. Correctness and complexity (англ.).
  9. Kirk Haller, Audrey Lee-St.John, Meera Sitharam, Ileana Streinu, Neil White. Body-and-cad geometric constraint systems (англ.).
  10. Dominique Michelucci, Sebti Foufou. Geometric constraint solving: The witness configuration method (англ.).
  11. Kramer Glenn A. Solving geometric constraint systems : a case study in kinematics (англ.). — 1:a upplagan.. — Cambridge, Mass.: MIT Press, 1992. — ISBN 9780262111645.
  12. Xiaobo Peng, Kunwoo Lee, Liping Chen. A geometric constraint solver for 3-D assembly modeling (англ.).
  13. Xiao-Shan Gao, Shang-Ching Chou. Solving Geometric Constraint Systems II. A Symbolic Approach and Decision of Rc-constructibility (англ.).
  14. 1 2 3 William Bouma, Ioannis Fudos, Christoph M. Hoffmann, Jiazhen Cai, Robert Paige. A Geometric Constraint Solver (неопр.). — 1993.
  15. Michela Farenzena, Andrea Fusiello. Stabilizing 3D modeling with geometric constraints propagation (англ.).
  16. R. Joan-Arinyo, M.V. Luzón, A. Soto. Constructive Geometric Constraint Solving: A New Application of Genetic Algorithms (англ.).
  17. D-Cubed Customers. Дата обращения: 17 января 2018. Архивировано 28 декабря 2017 года.
  18. Евгений Ермаков, Сергей Митин, Сергей Ротков, Александр Максименко. Использование C3D Solver для решения кинематических задач узлов механизмов. LEDAS Ltd. (6 января 2017). Дата обращения: 26 апреля 2017. Архивировано 27 апреля 2017 года.
  19. GeoSolver Project Page. Дата обращения: 17 января 2018. Архивировано 11 октября 2017 года.

Ссылки