Феруловая кислота

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Феруловая кислота
Систематическое название 3-метокси-4-гидроксикоричная кислота
Другие названия 3-метокси-4-гидроксифенилпропеновая кислота, 3-метокси-4-гидроксициннамовая кислота
Эмпирическая формула C10H10O4
Внешний вид кристаллическое вещество
Свойства
Молярная масса 194,186 г/моль
Температура плавления 170 °C
Классификация
Регистрационный номер CAS 1135-24-6
Регистрационный номер EINECS 214-490-0
PubChem 445858
Код InChI 1/C10H10O4/c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13/h2-6,11H,1H3,(H,12,13)/p-1/b5-3+
Безопасность
NFPA 704
NFPA 704 four-colored diamondОгнеопасность 1: Следует нагреть перед воспламенением (например, соевое масло). Температура вспышки выше 93 °C (200 °F)Опасность для здоровья 2: Интенсивное или продолжительное, но не хроническое воздействие может привести к временной потере трудоспособности или возможным остаточным повреждениям (например, диэтиловый эфир)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствует
1
2
0
Где это не указано, данные приведены при стандартных условиях (25 °C, 100 кПа).

Феру́ловая кислота́ (3-метокси-4-гидроксикоричная кислота) — ароматическая непредельная карбоновая кислота, представитель оксикоричных кислот. Название получила по названию рода растений ферула (Ferula) семейства зонтичных.

Свойства

Кристаллическое вещество белого или светло-бежевого цвета, растворима в горячей воде, этаноле, трудно растворима в диэтиловом эфире, бензоле.

Благодаря наличию двойной связи в остатке пропеновой кислоты и гидроксильной группы в ароматическом ядре легко вступает в свободнорадикальные реакции, образуя стабильный феноксильный радикал, чем способствует терминации этих реакций[1].

Способна к цис-транс-изомерии. В растениях преобладает транс-форма.

Распространение

Повсеместно содержится в высших растениях. Образуется при метаболизме фенольных аминокислот — фенилаланина и тирозина — через коричную, п-кумаровую и кофейную кислоты. Является одним из предшественников в процессе синтеза лигнина, компонента механических тканей растений. Образует диферуловые мостики между молекулами полисахаридов и лигнина в растительной клеточной стенке, что повышает её прочность. Непосредственный предшественник кумарина скополетина.

В виде сложных эфиров с тритерпеновыми спиртами и стеринами входит в состав γ-оризанола — антиоксидантного компонента, содержащегося в масле рисовых отрубей[2].

Помимо растений, обнаружена в мицелии ряда грибов[3].

Получение

Из растительного сырья получают экстракцией полярными растворителями (метанол, этанол, ацетон, диоксан, диэтиловый эфир, этилацетат и др.) или их двухкомпонентными системами с последующим кислотным, щелочным или ферментативным гидролизом экстрагированных соолигомеров[4].

Возможен синтез из ванилина и малоновой кислоты с использованием пиперидина и пиридина в качестве конденсирующего средства и растворителя[5].

Метаболизм

Биосинтез

Феруловая кислота синтезируется в растениях из кофейной кислоты. Реакцию катализирует кофеат-О-метилтрансфераза.[6]

Феруловая и дигидроферуловая кислоты являются компонентами клеточной оболочки растений, в которой они образуют сшивки между полимерной сетью лигнина и полисахаридами, придавая оболочке большую ригидность.[7]

Также феруловая кислота является интермедиатом в синтезе монолигнолов, мономеров лигнина, а также принимает участие в синтезе лигнанов.

Биологическая активность

Обладает широким спектром фармакологических свойств, в частности, отмечено противовоспалительное, антиаллергическое, антиагрегантное, противоопухолевое, антитоксическое, гепатопротекторное, кардиопротекторное, антибактериальное, противовирусное и другие виды действия, что обусловлено в основном антиоксидантным действием — торможением перекисного окисления липидов и ингибированием свободнорадикальных стадий синтеза простагландинов[8].

В качестве антиоксидантного компонента входит в состав различных биологически активных добавок, а также косметических средств.

Особые штаммы дрожжей, особенно штаммы, используемые при приготовлении пшеничного пива, такие как Saccharomyces delbrueckii (Torulaspora delbrueckii (англ.)), превращают феруловую кислоту в 4-винилгваякол (4-винил-2-метоксифенол), что придает пиву таких сортов, как Weissbier и Wit, их необычный гвоздичный аромат. Saccharomyces cerevisiae (сухие дрожжи) и Pseudomonas fluorescens также могут превращать транс-феруловую кислоту в 4-винил-2-метоксифенол. Из бактерии Pseudomonas fluorescens был изолирован фермент декарбоксилаза феруловой кислоты.

Примечания

  1. Перфилова, 2006.
  2. Инновации, 2012.
  3. Шемшура, 2013.
  4. Шемет, 2013.
  5. Ластовский, 1974.
  6. Shahadi, Fereidoon. Phenolics in Food and Nutraceuticals / Fereidoon Shahadi, Marian Naczk. — Florida : CRC Press, 2004. — P. 4. — ISBN 1-58716-138-9.
  7. Iiyama, K.; Lam, T. B.-T.; Stone, B. A. Covalent Cross-Links in the Cell Wall (англ.) // Plant Physiology. — American Society of Plant Biologists[англ.]*, 1994. — Vol. 104, no. 2. — P. 315—320. — ISSN 0032-0889. — doi:10.1104/pp.104.2.315. — PMC 159201.
  8. Дьяков, 2005.

Литература

  • Дьяков А. А., Перфилова В. Н., Тюренков И. Н.  Противоаритмическое действие феруловой кислоты // Вестник аритмологии. — 2005. — № 39. — С. 49—52.
  • Перфилова В. Н., Тюренков И. Н.  Влияние феруловой кислоты и фенибута на сократительные свойства миокарда при острой алкогольной интоксикации // Вестник ВолГМУ. — 2006. — № 2. — С. 55—58.
  • Инновации в области технологии продукции функционального и специализированного назначения / Под общ. ред. Н. В. Панковой. — СПб.: ФГБОУ ВПО «СПбГТЭУ»; Изд-во «ЛЕМА», 2012. — 184 с. Архивная копия от 14 февраля 2014 на Wayback Machine
  • Ластовский Р. П. . Методы получения химических реактивов и препаратов. — М., 1974. — Т. Выпуск 26. — 351 с.
  • Шемет С. Н.  Основные аспекты выделения феруловой кислоты из растительного сырья // Наука – шаг в будущее : тезисы докладов VII научно-практической конференции студентов, магистрантов и аспирантов факультета «Технология органических веществ», 5–6 декабря Минск, 2013 года. — 2013. — С. 68. Архивировано 21 февраля 2014 года.
  • Шемшура О. Н., Айткельдиева С. А., Бекмаханова Н. Е., Мазунина М. Н.  Нематоцидная активность фенолокислот микроскопических грибов // Успехи современного естествознания. — 2013. — № 4. — С. 156—157.