Математическая индукция
Математическая индукция — метод математического доказательства, который используется, чтобы доказать истинность некоторого утверждения для всех натуральных чисел. Для этого сначала проверяется истинность утверждения с номером 1 — база (базис) индукции, а затем доказывается, что если верно утверждение с номером n, то верно и следующее утверждение с номером n + 1 — шаг индукции, или индукционный переход.
Доказательство по индукции наглядно может быть представлено в виде так называемого принципа домино. Пусть какое угодно число косточек домино выставлено в ряд таким образом, что каждая косточка, падая, обязательно опрокидывает следующую за ней косточку (в этом заключается индукционный переход). Тогда, если мы толкнём первую косточку (это база индукции), то все косточки в ряду упадут.
Формулировка
Предположим, что требуется установить справедливость бесконечной последовательности утверждений, занумерованных натуральными числами: .
Допустим, что
Тогда все утверждения нашей последовательности верны. |
Логическим основанием для этого метода доказательства служит так называемая аксиома индукции, пятая из аксиом Пеано, определяющих натуральные числа. Верность метода индукции эквивалентна тому, что в любом непустом подмножестве натуральных чисел существует минимальный элемент.
Принцип полной математической индукции
Существует также вариация, так называемый принцип полной математической индукции. Вот его строгая формулировка:
Пусть имеется последовательность утверждений , , , . Если для любого натурального из того, что истинны все , , , , , следует также истинность , то все утверждения в этой последовательности истинны, то есть . |
В этой вариации база индукции оказывается излишней, поскольку является тривиальным частным случаем индукционного перехода. Действительно, при импликация эквивалентна . Принцип полной математической индукции является прямым применением более сильной трансфинитной индукции.
Принцип полной математической индукции также эквивалентен аксиоме индукции в аксиомах Пеано.
История
Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду, хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида[1]. Современное название метода было введено де Морганом в 1838 году.
Примеры
Задача. Доказать, что, каковы бы ни были натуральное n и вещественное q ≠ 1, выполняется равенство
Доказательство. Индукция по n.
База, n = 1:
Переход: предположим, что
тогда
- ,
что и требовалось доказать.
Комментарий: истинность утверждения в этом доказательстве — то же, что истинность равенства
Вариации и обобщения
- Трансфинитная индукция
- Структурная индукция
- Аксиомы Пеано
- Обратная индукция или Индукция Коши
- Доказательство одноцветности всех лошадей
Примечания
- ↑ Nachum L. Rabinovih. Раби Леви бен Гершом и происхождение метода математической индукции = Rabbi Levi ben Gershom and the origins of mathematical induction // Archive for History of Exact Sciences. — 1970. — Вып. 6. — С. 237-248.
Литература
- А. Шень. Математическая индукция. — МЦНМО, 2004. — 36 с.
- Н. Я. Виленкин. Индукция. Комбинаторика. — Пособие для учителей. — М.: Просвещение, 1976. — 48 с.
- Л. И. Головина, И. М. Яглом. Индукция в геометрии. — Физматгиз, 1961. — Т. 21. — 100 с. — (Популярные лекции по математике).
- Р. Курант, Г. Роббинс. Глава I, § 2 // Что такое математика?
- И. С. Соминский. Метод математической индукции. — Наука, 1965. — Т. 3. — 58 с. — (Популярные лекции по математике).
Ссылки
- Видео по методу математической индукции