Орбитально-топологическая эквивалентность

Материал из Википедии — свободной энциклопедии
Это текущая версия страницы, сохранённая Q-bit array (обсуждение | вклад) в 16:59, 13 февраля 2020 (откат правок Kroll6 (обс.) к версии Ilya Voyager). Вы просматриваете постоянную ссылку на эту версию.
(разн.) ← Предыдущая версия | Текущая версия (разн.) | Следующая версия → (разн.)
Перейти к навигации Перейти к поиску

В теории обыкновенных дифференциальных уравнений, два векторных поля (или соответствующих автономных уравнения) называются орбита́льно-топологи́чески эквивале́нтными, если существует гомеоморфизм фазового пространства одной системы на фазовое пространство другой системы, переводящий ориентированные фазовые кривые первой системы в фазовые кривые второй системы с сохранением ориентации.[1]

  • Нелинейный устойчивый узел орбитально-топологически эквивалентен своей линейной части в окрестности особой точки.
  • Устойчивый узел не является орбитально-топологически эквивалентным неустойчивому узлу, получающемуся из него обращением времени.
  • Гиперболическая особая точка орбитально-топологически эквивалентна своей линейной части в окрестности особой точки (Теорема Гробмана-Хартмана).
  1. Ильяшенко Ю.С., Вейгу Л. Нелокальные бифуркации. — М.: МЦНМО-ЧеРо, 1999. — 416 с. — ISBN 5-900916-34-0.