Молдавская пирамидка

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая BsivkoBot (обсуждение | вклад) в 23:03, 2 мая 2020 (чистка webcitation-архивов, где побито более 10 % текста). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Пирамидка Мефферта
Молдавская пирамидка
Японский тетраэдр
Тетраэдр Рубика
Pyraminx
Основная информация
Изобретатель Уве Мефферт
Год выпуска 1972
Кол-во возможных комбинаций 75 582 720
Число Бога 11 ходов
Форма тетраэдр
Собранная пирамидка

Пирамидка Мефферта (англ. Pyraminx), «Молдавская пирамидка» или «Японский тетраэдр» — головоломка в форме правильного тетраэдра, подобная кубику Рубика. Каждая грань тетраэдра поделена на 9 правильных треугольников. Задача состоит в том, чтобы перевести пирамидку в конфигурацию с одноцветными гранями.

Иногда за схожесть с кубическим аналогом называют также «Тетраэдр Рубика», хотя Эрнё Рубик не имеет никакого отношения к созданию этой головоломки.

История

Головоломка была изобретена и запатентована в 1972 году (до изобретения кубика Рубика) немцем Уве Меффертом, однако популярность игрушка приобрела после выхода кубического аналога и с 1981 года выпускается японской корпорацией Tomy Toys (на тот момент — третья в мире по величине компания по выпуску игрушек). В СССР тетраэдр изобрёл в 1981 году кишинёвский инженер А. А. Ордынец, за что головоломку также называют Молдавской пирамидкой.

Конструкция

Разобранная пирамидка

Головоломка состоит из 14 подвижных элементов: 4 осевых (каждый из которых имеет треугольники, обращенные на 3 смежные грани), 6 рёберных и 4 тривиальных угловых. Осевые элементы имеют форму октаэдров, а рёберные и угловые — тетраэдров. При вращении частей пирамидки относительно рассекающих её плоскостей фрагменты перемещаются. Вращение происходит вокруг осей, направленных из центра к вершинам головоломки.

Конструктивно головоломка представляет собой 4-лучевую объёмную крестовину, на осях которой размещаются осевые и тривиальные элементы, а в специальным образом сформированные пазы помещены рёберные элементы, снабжённые выступами, позволяющими фрагментам свободно перемещаться при вращении головоломки, при этом не вываливаясь из неё.

Сборка

Сборка пирамидки проще сборки кубика Рубика. Взаимное расположение цветных граней осевых и тривиальных элементов задано конструкцией, и они легко выставляются в правильные положения (трилистник, аналог «креста» у кубика Рубика, только конструктивно он формируется одновременно для всех граней), после чего остаётся упорядочить 6 рёберных элементов.

Модификации

Тетраминкс

Существует головоломка под названием «Тетраминкс» (англ. Tetraminx) в форме усечённого тетраэдра, которая отличается от пирамидки Мефферта отсутствием тривиальных вершин.

Визуально похожая пирамидка меньшего размера — 2×2×2. Несмотря на внешнюю схожесть, она имеет принципиально другой механизм (аналогичный кубу 2×2×2). По этой причине в результате вращений форма головоломки меняется, задача сборки состоит не только в упорядочении цветов, но и в восстановлении тетраэдра[1].

По меньшей мере четыре раза разными инженерами (в том числе в СССР[2]) предпринимались попытки создать Master Pyraminx, пирамидку с 4 слоями[3][4][5][6],и с 2011 года началось их массовое производство. Позднее Тимур Эвбатыров (Башкортостан) изобрёл Professor Pyraminx с 5 слоями[7][8], в настоящее время массово выпускаемый в разных странах мира.

Комбинаторика

Каждый из 4 осевых и 4 вершинных элементов может быть ориентирован тремя способами независимо от состояния других элементов. Шесть рёберных элементов могут быть ориентированы 25 способами и расположены 6!/2 способами. Таким образом, число конфигураций равно

В головоломке «Тетраминкс» тривиальные вершины отсутствуют, поэтому число конфигураций меньше в 81 раз и равно 933120[9].

Оптимальное решение

Известно, что число Бога головоломки (минимально необходимое число поворотов для сборки пирамидки при оптимальном методе сборки) равно 11. Имеется всего 933 120 возможных перестановок цветов на гранях (исключая расположение тривиальных угловых элементов), что позволяет определить оптимальное решение для каждой конфигурации методом полного перебора[9][10].

Следующая таблица показывает число конфигураций, которые могут быть решены в n ходов, но не могут быть решены меньше чем в n ходов.

n число конфигураций
0 1
1 8
2 48
3 288
4 1 728
5 9 896
6 51 808
7 220 111
8 480 467
9 166 276
10 2 457
11 32

Примечания

  1. Пирамидка 2x2
  2. Советские головоломки от конструктора Ордынца или кто первый изобрёл Пирамидку?
  3. Le Master Pyraminx / Univers Cubique / Créations — Les Forums du Refuge d’Aerie’s Guard. Дата обращения: 10 апреля 2011. Архивировано из оригинала 29 мая 2014 года.
  4. Master Pyraminx by shim on Shapeways (недоступная ссылка)
  5. TwistyPuzzles.com Forum • View topic — The Master Pyraminx — now with video
  6. YouTube — ‪Master Pyraminx‬‏
  7. TwistyPuzzles.com Forum • View topic — Professor Pyraminx Shipping
  8. YouTube — ‪Professor Pyraminx‬‏
  9. 1 2 Jaap Scherphuis. Pyraminx (англ.). Jaap's Puzzle Page. Дата обращения: 29 июля 2013. Архивировано 29 августа 2013 года.
  10. последовательность A079744 в OEIS
Ошибка в сносках?: Тег <ref> с именем «telesmi_rubic2», определённый в <references>, не используется в предшествующем тексте.

Литература

Ссылки