Двумерное пространство

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая WinterheartBot (обсуждение | вклад) в 12:49, 10 мая 2020 (Удаление шаблонов: {{нп5}}×1). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску

Двуме́рное простра́нство (иногда говорят двухме́рное пространство) — геометрическая модель плоской проекции физического мира, в котором мы живём. Двумерным пространством считается n-мерное пространство, где n=2.

Примером двумерного пространства является плоскость (двумерное евклидово пространство). Точки данного пространства возможно задать всего двумя числами. Например, любую точку можно задать парой чисел: (x, y). Плоские объекты характеризуются не только длиной, но и шириной[1].

Другие поверхности трёхмерного евклидова пространства могут быть рассмотрены как двумерные неевклидовы пространства.

Геометрия двумерного пространства

Многогранники

В двумерном пространстве существует бесконечно много правильных многогранников: правильные многоугольники. Примеры последних приведены ниже:

Символ {p} (символ Шлефли) обозначает правильный p-угольник.

Название Треугольник
(2-симплекс)
Квадрат
(2-куб и 2-октаэдр)
Пятиугольник
(2-додекаэдр и 2-икосаэдр)
Шестиугольник Семиугольник Восьмиугольник
Символ Шлефли {3} {4} {5} {6} {7} {8}
Вид
Название Девятиугольник Десятиугольник Одиннадцатиугольник Двенадцатиугольник Тринадцатиугольник?! Четырнадцатиугольник
Символ Шлефли {9} {10} {11} {12} {13} {14}
Вид
Название Пятнадцатиугольник Шестнадцатиугольник?! Семнадцатиугольник Восемнадцатиугольник Девятнадцатиугольник?! Двадцатиугольник n-угольник
Символ Шлефли {15} {16} {17} {18} {19} {20} {n}
Вид

Гиперсфера

Гиперсферой в двумерном пространстве является окружность, которую иногда называют 1-сфера, потому что её поверхность является одномерной. Площадь части плоскости, заключённой внутри гиперсферы (площадь круга) равна:

,

где  — радиус окружности.

Системы координат в двумерном пространстве

Наиболее распространённые координатные системы в двумерном евклидовом пространстве — прямоугольная (декартова) система координат и полярная система координат. На 2-сфере используется географическая координатная система.

См. также

Примечания